当前位置:高中试题 > 数学试题 > 函数的零点 > 已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(π4,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐...
题目
题型:解答题难度:一般来源:福建
已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(
π
4
,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个
π
2
单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式
(2)是否存在x0∈(
π
6
π
4
),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;
(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.
答案
(1)∵函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,
∴ω=
T
=2,
又曲线y=f(x)的一个对称中心为(
π
4
,0)
,φ∈(0,π),
故f(
π
4
)=sin(2×
π
4
+φ)=0,得φ=
π
2
,所以f(x)=cos2x.
将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y=cosx的图象,
再将y=cosx的图象向右平移
π
2
个单位长度后得到函数g(x)=cos(x-
π
2
)的图象,
∴g(x)=sinx.
(2)当x∈(
π
6
π
4
)时,
1
2
<sinx<


2
2
,0<cosx<
1
2

∴sinx>cos2x>sinxcos2x,
问题转化为方程2cos2x=sinx+sinxcos2x在(
π
6
π
4
)内是否有解.
设G(x)=sinx+sinxcos2x-cos2x,x∈(
π
6
π
4
),
则G′(x)=cosx+cosxcos2x+2sin2x(2-sinx),
∵x∈(
π
6
π
4
),
∴G′(x)>0,G(x)在(
π
6
π
4
)内单调递增,
又G(
π
6
)=-
1
4
<0,G(
π
4
)=


2
2
>0,且G(x)的图象连续不断,故可知函数G(x)在(
π
6
π
4
)内存在唯一零点x0,即存在唯一零点x0∈(
π
6
π
4
)满足题意.
(3)依题意,F(x)=asinx+cos2x,令F(x)=asinx+cos2x=0,
当sinx=0,即x=kπ(k∈Z)时,cos2x=1,从而x=kπ(k∈Z)不是方程F(x)=0的解,
∴方程F(x)=0等价于关于x的方程a=-
cos2x
sinx
,x≠kπ(k∈Z).
现研究x∈(0,π)∪(π,2π)时方程a=-
cos2x
sinx
的解的情况.
令h(x)=-
cos2x
sinx
,x∈(0,π)∪(π,2π),
则问题转化为研究直线y=a与曲线y=h(x),x∈(0,π)∪(π,2π)的交点情况.
h′(x)=
cosx(2sin2x+1)
sin2x
,令h′(x)=0,得x=
π
2
或x=
2

当x变换时,h′(x),h(x)的变化情况如下表:
核心考点
试题【已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(π4,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
题型:填空题难度:一般| 查看答案
题型:单选题难度:简单| 查看答案
题型:解答题难度:一般| 查看答案
题型:单选题难度:简单| 查看答案
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x(0,
π
2
π
2
π
2
,π)
(π,
2
2
2
,2π)
h′(x)+0--0+
h(x)1-1
方程2x=8的解是______.
设函数f(x)=x3-4x+a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x1>-1B.x2<0C.x2>0D.x3>2
设函数f(x)=a2x2(a>0).
(1)将函数y=f(x)图象向右平移一个单位即可得到函数y=φ(x)的图象,写出y=φ(x)的解析式及值域;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围.
设函数f(x)=x3-4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是(  )
A.x1>-1B.x2<0C.0<x2<1D.x3>2
已知函数f(x)=2sinx-x+k在区间[0,
π
2
]
上有两个零点,则实数k的取值范围是______.