当前位置:高中试题 > 数学试题 > 函数的零点 > 已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(2)证明函数y=f(x)(x≠1)的图...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=lnx-ax+1,a∈R是常数.
(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;
(2)证明函数y=f(x)(x≠1)的图象在直线l的下方;
(3)若函数y=f(x)有零点,求实数a的取值范围.
答案
(1)f′(x)=
1
x
-a
…(2分)f(1)=-a+1,kl=f"(1)=1-a,
所以切线l的方程为y-f(1)=kl(x-1),即y=(1-a)x.…(4分)
(2)令F(x)=f(x)-(1-a)x=lnx-x+1,x>0,
F′(x)=
1
x
-1 =
1
x
(1-x) ,解F′(x)=0得x=1

核心考点
试题【已知函数f(x)=lnx-ax+1,a∈R是常数.(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(2)证明函数y=f(x)(x≠1)的图】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
题型:填空题难度:一般| 查看答案
题型:单选题难度:简单| 查看答案
题型:解答题难度:一般| 查看答案
题型:填空题难度:一般| 查看答案
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x(0,1)1(1,+∞)
F"(x)+0-
F(x)最大值
已知函数f(x)=  





x+1
,  x
≤0,
log2x
,x>0
则函数y=f[f(x)]+1的零点个数是______ 个.
方程log2x=
1
x
的根所在区间为(  )
A.(0,
1
2
)
B.(
1
2
,1)
C.(1,2)D.(2,3)
设函数f(x)=lnx-
1
2
ax2+x

(1)当a=2时,求f(x)的最大值;
(2)令F(x)=f(x)+
1
2
ax2-x+
a
x
(0<x≤3),以其图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的取值范围;
(3)当a=0时,方程mf(x)=x2有唯一实数解,求正数m的值.
若关于x的不等式(2x-1)2≤ax2的解集中的整数恰有2个,则实数a的取值范围是______.
已知函数f(x)=





2x-1,x≤1
1+log2x,x>1.
则函数
f(x)的零点为(  )
A.
1
2
,0
B.-2,0C.
1
2
D.0