当前位置:高中试题 > 数学试题 > 函数的零点 > 已知函数f(x)=|x|-1,关于x的方程f2(x)-|f(x)|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰...
题目
题型:填空题难度:一般来源:不详
已知函数f(x)=|x|-1,关于x的方程f2(x)-|f(x)|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有8个不同的实根.
其中真命题的序号为______.
答案
关于x的方程f2(x)-|f(x)|+k=0,可化为f2(x)-|f(x)|=-k,
分别画出函数y=f2(x)-|f(x)|和y=-k的图象,如图.
由图可知,它们的交点情况是:
恰有2,4,5,8个不同的交点
故答案为:①②③④.
核心考点
试题【已知函数f(x)=|x|-1,关于x的方程f2(x)-|f(x)|+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
已知函数f(x)=





1,x≥a
0,x<a
,g(x)=x2-x+1,则函数y=g(x)-f(x)有两个零点的实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
在等比数列{an}中,a2,a6时方程x2-34x+64=0的两根,则a4等于(  )
A.8B.-8C.±8D.以上都不对
题型:单选题难度:一般| 查看答案
若定义在R上的奇函数f(x)满足f(x)=f(x+2),且f(1)=0,则f(x)在区间(0,5]上具有零点的最少个数是(  )
A.5B.4C.3D.2
题型:单选题难度:一般| 查看答案
方程x3-6x2-15x-10=0的实根个数是(  )
A.3B.2C.1D.0
题型:单选题难度:一般| 查看答案
已知函数f(x)=(
1
5
x-log3x,若实数x0是方程f(x)=0的解,且0<x1<x0,则f(x1)的值的值(  )
A.不小于0B.恒为正数C.恒为负数D.不大于0
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.