当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 点M(a,b)在函数的图象上,点N与点M关于y轴对称且在直线x﹣y+3=0上,则函数f(x)=abx2+(a+b)x﹣1在区间[﹣2,2)上[     ]A.既...
题目
题型:单选题难度:一般来源:湖南省月考题
点M(a,b)在函数的图象上,点N与点M关于y轴对称且在直线x﹣y+3=0上,则函数f(x)=abx2+(a+b)x﹣1在区间[﹣2,2)上[     ]
A.既没有最大值也没有最小值
B.最小值为﹣3,无最大值
C.最小值为﹣3,最大值为9
D.最小值为,无最大值
答案
D
核心考点
试题【点M(a,b)在函数的图象上,点N与点M关于y轴对称且在直线x﹣y+3=0上,则函数f(x)=abx2+(a+b)x﹣1在区间[﹣2,2)上[     ]A.既】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
题型:解答题难度:一般| 查看答案
为了保护环境,发展低碳经济,2010年全国“两会”使用的记录纸、笔记本、环保袋、手提袋等均是以石灰石为原料生产的石头纸用品,已知某单位每月石头纸用品的产量最少为300吨,最多为500吨,每月成本y(元)与每月产量x(吨)之间的函数关系可近似的表示为:y=x2﹣200x+80000,若要使每吨的平均成本最低,则该单位每月产量应为 _________ 吨.
题型:填空题难度:一般| 查看答案
若二次函数满足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[﹣1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
某公司用480万元购得某种产品的生产技术后,再次投入资金1520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元,经过市场调研发现:该产品的销售单价定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上,每增加10元,年销售量将再减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元)。
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x之间的函数关系式,并说明投资的第一年,该公司是赢利还是亏损?若赢利,最大利润是多少?若亏损,最少亏损是多少?(=1521)
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+c,直线l1:y=﹣t2+8t(其中0≦t≦2.t为常数);l2:x=2.若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.(Ⅰ)求a、b、c的值;
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若g(x)=6lnx+m,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.
题型:解答题难度:困难| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.