当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知函数,.(1)当b=0时,若f(x)在(﹣∞,2]上单调递减,求a的取值范围;(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)...
题目
题型:解答题难度:困难来源:江苏期中题
已知函数
(1)当b=0时,若f(x)在(﹣∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(2)中的条件的整数对(a,b),试构造一个定义在D={x|x∈R且x≠2k,k∈Z}上的函数h(x),使h(x+2)=h(x),且当x∈(﹣2,0)时,h(x)=f(x).
答案
解:(1)当b=0时,f(x)=ax2﹣4x,
若a=0,f(x)=﹣4x,则f(x)在(﹣∞,2]上单调递减,符合题意;
若a≠0,要使f(x)在(﹣∞,2]上单调递减,必须满足
∴0<a≤1.
综上所述,a的取值范围是[0,1]
(2)若a=0,,则f(x)无最大值,故a≠0,
∴f(x)为二次函数,要使f(x)有最大值,必须满足
即a<0且
此时,时,f(x)有最大值.
又g(x)取最小值时,x0=a,
依题意,有,则

∵a<0且
,得a=﹣1,
此时b=﹣1或b=3.
∴满足条件的整数对(a,b)是(﹣1,﹣1),(﹣1,3).
(3)当整数对是(﹣1,﹣1),(﹣1,3)时,f(x)=﹣x2﹣2x
∵h(x+2)=h(x),
∴h(x)是以2为周期的周期函数,
又当x∈(﹣2,0)时,h(x)=f(x),构造h(x)如下:
当x∈(2k﹣2,2k),k∈Z,则
h(x)=h(x﹣2k)=f(x﹣2k)=﹣(x﹣2k)2﹣2(x﹣2k),
故h(x)=﹣(x﹣2k)2﹣2(x﹣2k),x∈(2k﹣2,2k),k∈Z.
核心考点
试题【已知函数,.(1)当b=0时,若f(x)在(﹣∞,2]上单调递减,求a的取值范围;(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知函数f(x)=ax2﹣2ax+3﹣b(a>0)在[1,3]有最大值5和最小值2,求a、b的值.
题型:解答题难度:一般| 查看答案
已知函数,a∈R.
(1)当a=1时,求函数f(x)的最大值;
(2)如果对于区间上的任意一个x,都有f(x)≤1成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
已知f(x)是二次函数,且满足f(1+x)=f(1﹣x),若f(2)>f(1),那么f(π)、、f(3)按由小到大的次序为(    )。
题型:填空题难度:一般| 查看答案
已知函数f(x)=|x﹣a|,g(x)=ax,(a∈R).
(1)若函数y=f(x)是偶函数,求出符合条件的实数a的值;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)f(x),试求函数y=F(x)在区间[1,2]上的最大值.
题型:解答题难度:一般| 查看答案
若函数y=x2﹣3x﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是(    )
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.