当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 己知二次函数y=f(x) 的图象过点(1,-4),且不等式f(x)<0的解集是(O,5).(I )求函数f(x)的解析式;(II)设g(x)=x3-(4k-10...
题目
题型:解答题难度:一般来源:绵阳一模
己知二次函数y=f(x) 的图象过点(1,-4),且不等式f(x)<0的解集是(O,5).
(I )求函数f(x)的解析式;
(II)设g(x)=x3-(4k-10)x+5,若函数h(x)=2f(x)+g(x)在[-4,-2]上单调递增,在[-2,0]上单调递减,求y=h(x)在[-3,1]上的最大值和最小值..
答案
(Ⅰ)由已知y=f (x)是二次函数,且f (x)<0的解集是(0,5),
可得f (x)=0的两根为0,5,
于是设二次函数f (x)=ax(x-5),
代入点(1,-4),得-4=a×1×(1-5),解得a=1,
∴f (x)=x(x-5). …(4分)
(Ⅱ)h(x)=2f (x)+g(x)=2x(x-5)+x3-(4k-10)x+5=x3+2x2-4kx+5,
于是h′(x)=3x2+4x-4k,
∵h(x)在[-4,-2]上单调递增,在[-2,0]上单调递减,
∴x=-2是h(x)的极大值点,
∴h′(2)=3×(-2)2+4×(-2)-4k=0,解得k=1.  …(6分)
∴h(x)=x3+2x2-4x+5,进而得h′(x)=3x2+4x-4.
令h′(x)=3x2+4x-4=0,得x=-2,或x=
2
3

由下表:
核心考点
试题【己知二次函数y=f(x) 的图象过点(1,-4),且不等式f(x)<0的解集是(O,5).(I )求函数f(x)的解析式;(II)设g(x)=x3-(4k-10】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
题型:单选题难度:简单| 查看答案
题型:解答题难度:一般| 查看答案
题型:填空题难度:简单| 查看答案
题型:解答题难度:一般| 查看答案
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x(-3,-2)-2(-2,
2
3
2
3
2
3
,1)
h′(x)+0-0+
h(x)极大极小
函数y=x2,x∈[-1,2]的最大值为(  )
A.1B.2C.4D.不存在
关于x的不等式x2-2ax+a+2≤0的解集为M,如果[1,4]⊆M,则实数a的取值范围为______.
已知:f(x)=x2+2x-1,g(x)=kx+b(k≠0),且f(g(0))=-1,g(f(0))=2,则实数k的值为:______.
已知函数f(x)=
1
2
ax2
+2x,g(x)=lnx.
(1)如果函数y=f(x)在[1,+∞)上是单调减函数,求a的取值范围;
(2)是否存在实数a>0,使得方程
g(x)
x
=f(x)-(2a+1)在区间(
1
e
,e)内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
f(x)=





x2-2x-1,    x≥0
-2x+6,       x<0
,若f(t)>2,则实数t的取值范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-∞,2)∪(3,+∞)C.(-∞,-4)∪(1,+∞)D.(-∞,0)∪(3,+∞)