当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知:f(x)=x2+2x-1,g(x)=kx+b(k≠0),且f(g(0))=-1,g(f(0))=2,则实数k的值为:______....
题目
题型:填空题难度:简单来源:不详
已知:f(x)=x2+2x-1,g(x)=kx+b(k≠0),且f(g(0))=-1,g(f(0))=2,则实数k的值为:______.
答案
∵f(x)=x2+2x-1,g(x)=kx+b(k≠0),
∴f(g(0))=f(b)=b2+2b-1=-1,g(f(0))=g(-1)=-k+b=2
∴b=0或b=-2
当b=0时,k=-2
当b=-2时,k=-4
故答案为:-2或-4
核心考点
试题【已知:f(x)=x2+2x-1,g(x)=kx+b(k≠0),且f(g(0))=-1,g(f(0))=2,则实数k的值为:______.】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知函数f(x)=
1
2
ax2
+2x,g(x)=lnx.
(1)如果函数y=f(x)在[1,+∞)上是单调减函数,求a的取值范围;
(2)是否存在实数a>0,使得方程
g(x)
x
=f(x)-(2a+1)在区间(
1
e
,e)内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
f(x)=





x2-2x-1,    x≥0
-2x+6,       x<0
,若f(t)>2,则实数t的取值范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-∞,2)∪(3,+∞)C.(-∞,-4)∪(1,+∞)D.(-∞,0)∪(3,+∞)
题型:单选题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*
(1)若数列{an} 满足
1
an+1
=f′(
1
an
)
,且a1=4,求数列{an} 的通项公式;
(2)若数列{bn}满足:b1=1,bnbn+1=
1
2


an+1
,当n≥3,n∈N*时,求证:①b2nb2n+1b2n-1(n∈N*);②b1+b2+b3+…bn


2n+1
-1
题型:解答题难度:一般| 查看答案
对长为800m、宽为600m的一块长方形地面进行绿化,要求四周种花卉,花卉带的宽度相等,中间种草,并且种草的面积不小于总面积的一半,则花卉带的宽度范围为______(用区间表示).
题型:填空题难度:一般| 查看答案
已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=
f(x)
x
-4lnx
的零点个数.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.