当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.(1)求函数f...
题目
题型:解答题难度:一般来源:不详
已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.
答案
(1)由f(2)=f(0)=0可知,4a+2b+c=0,c=0,
又f(x)=2x有两个相等实根,故(b-2)2-4ac=0,
可解得a=-1,b=2,c=0,
故f(x)的解析式为:f(x)=-x2+2x;
(2)由(1)可知f(x)=-x2+2x,
其图象为开口向下的抛物线,对称轴为x=1,
故可取区间P=[1,2],满足题意;
(3)假设存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和42m,4n],
由(1)可知f(x)=-x2+2x=-(x-1)2+1≤1,故4n≤1,故m<n≤
1
4

又函数f(x)的对称轴为x=1,抛物线的开口向下,
故f(x)在区间[m,n]单调递增,
则有f(m)=4m,f(n)=4n,即m,n为方程-x2+2x=4x的实根,
解得x=0或x=-2,结合m<n可得m=-2,n=0,
故存在m=-2,n=0符合题意.
核心考点
试题【已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.(1)求函数f】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
函数f(x)=x2+2(a-1)x+2在区间(-∞,4)上是减函数,则实数a的取值范围是(  )
A.(-∞,-3]B.[3,+∞)C.{-3}D.(-∞,5)
题型:单选题难度:简单| 查看答案
已知f(t)=-t2+at-
1
2
a-
1
2
在[-1,1]上的最大值为1,求a的值.
题型:解答题难度:一般| 查看答案
设0≤x≤2则函数y=4x-
1
2
-3•2x+5
的最大值是______.
题型:填空题难度:一般| 查看答案
已知关于x的二次方程x2+2mx+2m+1=0有一正一负根,则m∈______.
题型:填空题难度:一般| 查看答案
已知:函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间



2,3



上有最大值4,最小值1,设函数f(x)=
g(x)
x

(1)求a、b的值及函数f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈



-1,1



时恒成立,求实数k的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.