当前位置:高中试题 > 数学试题 > 二次函数的图象和性质 > 某农家旅游公司有客房300间,日房租每间为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日房租每增加2元,客房出租数就会减少10间.若不考虑其他因...
题目
题型:解答题难度:一般来源:不详
某农家旅游公司有客房300间,日房租每间为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日房租每增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?
答案
设客房日租金每间提高2x元,则根据如果每间客房日房租每增加2元,客房出租数就会减少10间,可得每天客房出租数为300-10x,
由x>0,且300-10x>0,得0<x<30.
设客房租金总收入y元,y=(20+2x)(300-10x)
=-20(x-10)2+8000(0<x<30),
当x=10时,ymax=8 000.
即当每间客房日租金提高到20+10×2=40元时,客房租金总收入最高,为每天8000元.
核心考点
试题【某农家旅游公司有客房300间,日房租每间为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日房租每增加2元,客房出租数就会减少10间.若不考虑其他因】;主要考察你对二次函数的图象和性质等知识点的理解。[详细]
举一反三
已知函数y=x2-2ax+1(a为常数)在-2≤x≤1上的最小值为h(a),试将h(a)用a表示出来,并求出h(a)的最大值.
题型:解答题难度:一般| 查看答案
函数f(x)=2x2-mx+3,当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)等于______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;   
(2)问a为何值时,函数的最小值是-4.
题型:解答题难度:一般| 查看答案
设f(x)=x2+bx+c (b,c为常数),方程f(x)-x=0的两个实根为x1、x2且满足x1>0,x2-x1>1.
(1)求证:b2>2(b+2c);
(2)0<t<x1,比较f(t)与x1的大小;
(3)若当x∈[-1,1]时,对任意的x都有|f(x)|≤1,求证:|1+b|≤2.
题型:解答题难度:一般| 查看答案
若函数f(x)=x2+(a-1)x+a在区间[2,+∞)上是增函数,则a的取值范围(  )
A.(-∞,-3)B.[3,+∞)C.(-∞,3]D.[-3,+∞)
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.