当前位置:高中试题 > 数学试题 > 一次函数的图象和性质 > 设二次函数f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于(  )A.-B.-C.cD....
题目
题型:单选题难度:简单来源:不详
设二次函数f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于(  )
A.-B.-
C.cD.

答案
C
解析
∵f(x1)=f(x2),∴f(x)的对称轴为x0=-=,得f(x1+x2)=f-=a×+b×+c=c,故选C.
核心考点
试题【设二次函数f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于(  )A.-B.-C.cD.】;主要考察你对一次函数的图象和性质等知识点的理解。[详细]
举一反三
已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,则(  )
A.∀x∈(0,1),都有f(x)>0
B.∀x∈(0,1),都有f(x)<0
C.∃x0∈(0,1),使得f(x0)=0
D.∃x0∈(0,1),使得f(x0)>0

题型:单选题难度:一般| 查看答案
若a,b,c成等比数列,则函数f(x)=ax2+bx+c的图象与x轴交点的个数为    
题型:填空题难度:一般| 查看答案
已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(  )
A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)

题型:单选题难度:简单| 查看答案
若二次函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,现有下列结论:①方程f(f(x))=x一定没有实数根;
②若a>0,则不等式f(f(x))>x对一切实数x都成立;
③若a<0,则必存在实数x0,使f(f(x0))>x0;
④若a+b+c=0,则不等式f(f(x))<x对一切实数都成立;
⑤函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论是    (写出所有正确结论的编号). 
题型:填空题难度:一般| 查看答案
已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,求二次函数f(x)的解析式.
题型:解答题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.