当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=x2+bx+c,g(x)=2x+b,对任意的x∈R,恒有g(x)≤f(x).(1)证明:c≥1;(2)若b>0,不等式m(c2-b2)≥f(c...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=x2+bx+c,g(x)=2x+b,对任意的x∈R,恒有g(x)≤f(x).
(1)证明:c≥1;
(2)若b>0,不等式m(c2-b2)≥f(c)-f(b)恒成立,求m的取值范围.
答案
(1)证明,由已知,对任意的x∈R,2x+b≤x2+bx+c,即x2+(b-2)x+(c-b)≥0恒成立,
所以△=(b-2)2-4(c-b)≤0,c≥
b2+4
4
≥1
(2)c≥
b2+4
4
≥2


b2
4
×1
=b,
①当c=b时,c2-b2=0,f(c)-f(b)=0,m∈R
②当c>b时,有m≥
f(c)-f(b)=
c2-b2
=
c2-b2+bc-b2
c2-b2
=
c+2b
b+c
,令t=
b
c
,则0<t<1
c+2b
b+c
=
1+2•
b
c
b
c
+1
=
1+2t
t+1
=2-
1
1+t
,而函数h(t)=2-
1
1+t
(0<t<1)是增函数,
所以函数h(t)的值域为(1,
3
2
),则m的取值范围是[
3
2
,+∞)
综上所述,m的取值范围是[
3
2
,+∞).
核心考点
试题【已知函数f(x)=x2+bx+c,g(x)=2x+b,对任意的x∈R,恒有g(x)≤f(x).(1)证明:c≥1;(2)若b>0,不等式m(c2-b2)≥f(c】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设f(x)是R上的奇函数,且当x>0时f(x)=x2+x+1,则f(-2)=______.
题型:填空题难度:一般| 查看答案
已知定义在R上的奇函数f(x),当x∈(0,+∞)时,f(x)=log2x,则方程f(x)=0的解集为______.
题型:填空题难度:一般| 查看答案
若函数f(x)是定义在实数集上的奇函数,且f(x-2)=-f(x),给出下列结论:①f(2)=0;②f(x)以4为周期;③f(x)的图象关于y轴对称;④f(x+2)=f(-x).
这些结论中正确的有______.(必须填写序号)
题型:填空题难度:一般| 查看答案
已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.