当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则(  )A.f(x1)+f(x2)+f(x3)>0B.f(x1)+f...
题目
题型:单选题难度:一般来源:不详
设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则(  )
A.f(x1)+f(x2)+f(x3)>0B.f(x1)+f(x2)+f(x3)<0
C.f(x1)+f(x2)+f(x3)=0D.f(x1)+f(x2)>f(x3
答案
∵x1+x2>0,x2+x3>0,x3+x1>0,
∴x1>-x2,x2>-x3,x3>-x1
又f(x)是定义在R上单调递减的奇函数,
∴f(x1)<f(-x2)=-f(x2),f(x2)<f(-x3)=-f(x3),f(x3)<f(-x1)=-f(x1),
∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,
∴三式相加整理得f(x1)+f(x2)+f(x3)<0
故选B
核心考点
试题【设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则(  )A.f(x1)+f(x2)+f(x3)>0B.f(x1)+f】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
设函数y=f(x)是定义在R上的奇函数,且满足f(x-2)=-f(x)对一切x∈R都成立,又当x∈[-1,1]时,f(x)=x3,则下列四个命题:①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3]时,f(x)=(2-x)3; ③函数y=f(x)的图象关于x=1对称;④函数y=f(x)的图象关于(2,0)对称.其中正确的命题是 ______.
题型:填空题难度:一般| 查看答案
已知二次函数f(x)满足f(-1)=0,且x≤f(x)≤
1
2
(x2+1)对一切实数x恒成立.
(1)求f(1);
(2)求f(x)的解析表达式.
题型:解答题难度:一般| 查看答案
函数f(x)=3x+sinx+1(x∈R),若f(t)=2,则f(-t)的值为______.
题型:填空题难度:一般| 查看答案
已知函数f(x+1)为奇函数,函数f(x-1)为偶函数,且f(0)=2,则f(4)=______.
题型:填空题难度:一般| 查看答案
已知f (x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R都满足f(a•b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f (x)的奇偶性,并证明你的结论;
(3)若f(
1
2
)=-
1
2
,令bn=
2n
f(2n)
Sn
表示数列{bn}的前n项和.试问:是否存在关于n的整式g (n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g (n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.