当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 若定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数,则点(a,b)的轨迹是(  )A.一个点B.两个点C.线段D.直线...
题目
题型:单选题难度:一般来源:大连一模
若定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数,则点(a,b)的轨迹是(  )
A.一个点B.两个点C.线段D.直线
答案
由定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数,
则2a-1+a2+1=0,即a2+2a=0,解得:a=0或a=-2.
当a=0时,函数f(x)=ax2+bx+2a-b=bx-b.
由f(-x)=f(x)得:-bx-b=bx-b,所以b=0;
当a=-2时,函数f(x)=ax2+bx+2a-b=-2x2+bx-b-4.
由f(-x)=f(x)得:-2(-x)2-bx-b-4=-2x2+bx-b-4.所以b=0.
所以满足定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数的点(a,b)的轨迹是点(0,0),(-2,0)
故选B.
核心考点
试题【若定义域为[2a-1,a2+1]的函数f(x)=ax2+bx+2a-b是偶函数,则点(a,b)的轨迹是(  )A.一个点B.两个点C.线段D.直线】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=x3-2ax2-3x,x∈R.
(Ⅰ)当a=0时,求函数f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)≥ax恒成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)同时满足如下三个条件:①定义域为[-1,1];②f(x)是偶函数;③x∈[-1,0]时,f(x)=
1
e2x
-
a
ex
,其中a∈R.
(Ⅰ)求f(x)在[0,1]上的解析式,并求出函数f(x)的最大值;
(Ⅱ)当a≠0,x∈[0,1]时,函数g(x)=(
x2
a
+x-2-
3
a
)[e2x-f(x)]
,若g(x)的图象恒在直线y=e上方,求实数a的取值范围(其中e为自然对数的底数,e=2.71828…).
题型:解答题难度:一般| 查看答案
已知关于x的函数f(x)=x2+2ax+b(其中a,b∈R)
(Ⅰ)求函数|f(x)|的单调区间;
(Ⅱ)令t=a2-b.若存在实数m,使得|f(m)|≤
1
4
与|f(m+1)|≤
1
4
同时成立,求t的最大值.
题型:解答题难度:一般| 查看答案
函数y=f(x+1)-
3
2
为奇函数,y=f-1(x)是y=f(x)的反函数,若f(3)=0,则f-1(3)=(  )
A.-1B.1C.-2D.2
题型:单选题难度:一般| 查看答案
已知f(x)是R上的偶函数,且当x≥0时,f(x)=2x,又a是函数g(x)=ln(x+1)-
2
x
的正零点,则f(-2),f(a),f(1.5)的大小关系是______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.