当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 设函数f(x)是定义在R上以3为周期的奇函数,若f(1)<0,f(2)=(a-1)(2a+3),则a的取值范围是______....
题目
题型:填空题难度:一般来源:不详
设函数f(x)是定义在R上以3为周期的奇函数,若f(1)<0,f(2)=(a-1)(2a+3),则a的取值范围是______.
答案
∵函数f(x)是定义在R上以3为周期的奇函数,
又∵f(1)<0,
∴f(-1)>0,
∴f(2)=f(-1)>0
又由f(2)=(a-1)(2a+3),
∴(a-1)(2a+3)>0,
解得a<-
3
2
,或a>1
∴a的取值范围是(-∞,-
3
2
)∪(1,+∞)
故答案为:(-∞,-
3
2
)∪(1,+∞)
核心考点
试题【设函数f(x)是定义在R上以3为周期的奇函数,若f(1)<0,f(2)=(a-1)(2a+3),则a的取值范围是______.】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知定义在(-1,1)上的函数f(x)满足f(
1
2
)=1
,且对任意x、y∈(-1,1)有f(x)-f(y)=f(
x-y
1-xy
)

(Ⅰ)判断f(x)在(-1,1)上的奇偶性,并加以证明.
(Ⅱ)令x1=
1
2
xn+1=
2xn
1+
x2n
,求数列{f(xn)}的通项公式.
(Ⅲ)设Tn{
2n-1
f(xn)
}
的前n项和,若Tn
6-3m
2
对n∈N*恒成立,求m的最大值.
题型:解答题难度:一般| 查看答案
已知定义在R上奇函数f(x)满足f(1+x)=f(1-x)且f(x)在区间[-1,1]上单调递增,则函数f(x)在区间[1,3]上的(  )
A.最大值是f(1),最小值是f(3)
B.最大值是f(3),最小值是f(1)
C.最大值是f(1),最小值是f(2)
D.最大值是f(2),最小值是f(3)
题型:单选题难度:简单| 查看答案
设函数y=f(x)在(0,+∞)上有定义,对于给定的正数K,定义函数fk(x)=





f(x),f(x)≤K
K,f(x)>K
,取函数f(x)=
5
2
x2-3x2lnx
,若对任意的x∈(0,+∞),恒有fk(x)=f(x),则K的最小值为______.
题型:填空题难度:一般| 查看答案
若函数f(x)=
x3+sinx
x4+cosx+2
在(-∞,+∞)上的最大值与最小值分别为M与N,则有(  )
A.M+N=0B.M-N=0C.MN=0D.
M
N
=0
题型:单选题难度:一般| 查看答案
已知定义域为R的函数f(x)满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0
(1)证明:函数f(x)是奇函数;
(2)若f(1)=2,求函数f(x)在区间[-2,2]上的最大值和最小值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(t2-k)>0恒成立,求实数k的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.