当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 定义在R上的函数f(x)满足f(x+2)+f(x)=0,且函数f(x+1)为奇函数.给出下列结论:①函数f(x)的最小正周期为4;②函数f(x)的图象关于(1,...
题目
题型:单选题难度:简单来源:攀枝花三模
定义在R上的函数f(x)满足f(x+2)+f(x)=0,且函数f(x+1)为奇函数.给出下列结论:
①函数f(x)的最小正周期为4;
②函数f(x)的图象关于(1,0)对称;
③函数f(x)的图象关于x=2对称;
④函数f(x)的最大值为f(2).
其中正确命题的序号是(  )
A.①②B.②③C.③④D.①④
答案
由f(x+2)+f(x)=0
可得f(x+4)=-f(x+2)=f(x)
∴其周期是4
由函数f(x+1)为奇函数
可得f(1-x)=-f(1+x)
可变形为:f(2-x)=-f(x)
可知函数f(x)图象关于点(1,0)对称
故选A
核心考点
试题【定义在R上的函数f(x)满足f(x+2)+f(x)=0,且函数f(x+1)为奇函数.给出下列结论:①函数f(x)的最小正周期为4;②函数f(x)的图象关于(1,】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
f(x)=e-(x-u)2的最大值为m,且f(x)为偶函数,则m+u=______.
题型:填空题难度:简单| 查看答案
在自然数集N上定义一个函数y=f(x),已知f(1)+f(2)=5.当x为奇数时,f(x+1)-f(x)=1,当x为偶数时f(x+1)-f(x)=3.
(1)求证:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差数列.
(2)求f(x)的解析式.
题型:解答题难度:一般| 查看答案
下列函数中是奇函数的为(  )
A.y=x2+cosx,x∈RB.y=|2sinx|,x∈R
C.y=tanx2,x≠±


π
2
+kπ
(k∈N)
D.y=x2sinx,x∈R
题型:单选题难度:简单| 查看答案
已知函数f(x)=ax2+
x
e
-lnx
(其中a为常数,e为自然对数的底数).
(1)任取两个不等的正数x1、x2
f(x1)-f(x2)
x1-x2
<0
恒成立,求:a的取值范围;
(2)当a>0时,求证:f(x)=0没有实数解.
题型:解答题难度:一般| 查看答案
已知f(x)是定义在R上的偶函数,且f(x)在(0,+∞)上是增函数,则(  )
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.