当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=x22+ax+b,其中a、b∈R,g(x)=ex(e是自然对数的底).(1)当b<a<1,f(1)=0,且函数y=2f(x)+1的零点,证明:...
题目
题型:解答题难度:一般来源:安徽模拟
已知函数f(x)=
x2
2
+ax+b
,其中a、b∈R,g(x)=ex(e是自然对数的底).
(1)当b<a<1,f(1)=0,且函数y=2f(x)+1的零点,证明:-
3
2
<b≤-
1
2

(2)当b=1时,若不等式f(x)≤g(x)在x∈(
1
2
,+∞)
恒成立,求a的取值范围.
答案
(I)由f(1)=0,得a=-
2b+1
2

又b<a<1,
∴b<-
2b+1
2
<1,
解得-
3
2
<b<-
1
4

且函数y=2f(x)+1的零点,即x2+2ax+2b+1=0有实根
∴△=4a2-4(2b+1)≥0
将a=-
2b+1
2
代入化简得:4b2-4b-3≥0
解得b≤-
1
2
或b≥
3
2

由①②得-
3
2
<b≤-
1
2


(II)当b=1时,f(x)=
x2
2
+ax+1
,由式f(x)≤g(x),
ax≤ex-
1
2
x2-1
x∈(
1
2
,+∞)
恒成立,
a≤
ex-
1
2
x2-1
x
x∈(
1
2
,+∞)
恒成立,
g(x)=
ex-
1
2
x2-1
x
,则g′(x)=
ex(x-1)-
1
2
x2+1
x2

h(x)=ex(x-1)-
1
2
x2+1
,则h"(x)=x(ex-1)
x∈(
1
2
,+∞)

∴h′(x)>0
即h(x)在(
1
2
,+∞)
上单调递增
∴h(x)≥h(
1
2
)=
7
8
-


e
2
>0
∴g"(x)>0
∴g(x)在x∈(
1
2
,+∞)
单调递增
则g(x)≥g(
1
2
)=
e
1
2
-
1
8
-1
1
2
=2


e
-
9
4

故a≤2


e
-
9
4
核心考点
试题【已知函数f(x)=x22+ax+b,其中a、b∈R,g(x)=ex(e是自然对数的底).(1)当b<a<1,f(1)=0,且函数y=2f(x)+1的零点,证明:】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=
px2+2
q-3x
是奇函数,且f(2)=-
5
3
,求f(x)的解析式.
题型:解答题难度:一般| 查看答案
已知函数f(n)对任意实数n都满足条件:f(n+1)=
1
f(n)
,若f(1)=8,则f(2009)=______.
题型:填空题难度:一般| 查看答案
y=f(x)在(0,2)上是增函数,y=f(x+2)是偶函数,则f(1),f(
5
2
),f(
7
2
)
的大小关系是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=xlnx,g(x)=-
2
3
x3+
1
2
ax2-3bx+c(a,b,c∈R)

(1)若函数h(x)=f′(x)-g′(x)是其定义域上的增函数,求实数a的取值范围;
(2)若g(x)是奇函数,且g(x)的极大值是g(


3
3
)
,求函数g(x)在区间[-1,m]上的最大值;
(3)证明:当x>0时,f′(x)>
1
ex
-
2
ex
+1
题型:解答题难度:一般| 查看答案
已知函数f(x)=lnx,g(x)=
1
2
x2

(I)设函数F(x)=ag(x)-f(x)(a>0),若F(x)没有零点,求a的取值范围;
(II)若x1>x2>0,总有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.