当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 设f(x)是R上的奇函数,且当x>0时,f(x)+xf′(x)>0,若f(3)=5,且当x∈(-∞,-a)∪(a,+∞),a>0时,不等式|f(x)|>15|x...
题目
题型:填空题难度:一般来源:不详
设f(x)是R上的奇函数,且当x>0时,f(x)+xf′(x)>0,若f(3)=5,且当x∈(-∞,-a)∪(a,+∞),a>0时,不等式|f(x)|>
15
|x|
恒成立,则a的取值范围是______.
答案
构造函数g(x)=xf(x),
因为当x>0时,g′(x)=f(x)+xf′(x)>0,
所以函数g(x)在x∈(0,+∞)上为单调递增函数;
所以不等式|f(x)|>
15
|x|
等价于|xf(x)|>15,即g(x)>15或g(x)<-15
当x>3时,g(x)>g(3)=3f(3)=3×5=15
又g(x)>g(0)=0,所以g(x)<-15这种情况不存在,不考虑
因为f(x)是奇函数,所以f(-x)=-f(x)
所以g(-x)=-xf(-x)=xf(x)=g(x),所以g(x)是偶函数
故xf(x)>15的解集为x∈(-∞,-3]∪[3,+∞)
要使x∈(-∞,-a)∪(a,+∞),a>0时,不等式|f(x)|>
15
|x|
恒成立,只需a≥3
故答案为:a≥3
核心考点
试题【设f(x)是R上的奇函数,且当x>0时,f(x)+xf′(x)>0,若f(3)=5,且当x∈(-∞,-a)∪(a,+∞),a>0时,不等式|f(x)|>15|x】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
已知函数f(x)=xex
(I)求f(x)的单调区间与极值;
(II)是否存在实数a使得对于任意的x1,x2∈(a,+∞),且x1<x2,恒有
f(x2)-f(a)
x2-a
f(x1) -f(a)
x1-a
成立?若存在,求a的范围,若不存在,说明理由.
题型:解答题难度:一般| 查看答案
定义域里的任意x都满足______,则f(x)为偶函数.
题型:填空题难度:一般| 查看答案
已知不等式|x-a|>x-1对任意x∈[0,2]恒成立,则实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
已知m>0,a1a2>0,则使得
m2+1
m
≥|aix-2|(i=1,2)
恒成立的x的取值范围是(  )
A.[0,
2
a1
]
B.[0,
2
a2
]
C.[0,
4
a1
]
D.[0,
4
a2
]
题型:单选题难度:一般| 查看答案
已知∀x∈R,f(1+x)=f(1-x),当x≥1时,f(x)=ln(x+1),则当x<1时,f(x)=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.