当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=px2+2x-q,对定义域中的所有x都满足f(x)+f(-x)=0,f(2)=5(1)求实数p,q的值;(2)判断函数f(x)在[1,+∞)上...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=
px2+2
x-q
,对定义域中的所有x都满足f(x)+f(-x)=0,f(2)=5
(1)求实数p,q的值;
(2)判断函数f(x)在[1,+∞)上的单调性,并证明.
答案
(1)∵函数f(x)=
px2+2
x-q
,对定义域中的所有x都满足f(x)+f(-x)=0,f(2)=5,
∴f(2)=
4p+2
2-q
=5

即4p+2=10-5q,
∴4p+5q=8,
由f(x)+f(-x)=0得
px2+2
x-q
=-
px2+2
-x-q
=
px2+2
x+q

∴-q=q,解得q=0,
∴p=2.
(2)∵p=2,q=0,
∴函数f(x)=
px2+2
x-q
=
2x2+2
x
=2x+
2
x

f(x)在[1,+∞)上的单调递增.
证明:设x2>x1≥1,
则f(x2)-f(x1)=2(x2-x1)+
2(x1-x2)
x1x2
=2(x2-x1)•
x1x2-1
x1x2

∵x2>x1≥1,
∴x2-x1>0,x2x1>1,
∴f(x2)-f(x1)>0,
即f(x2)>f(x1),
∴函数f(x)在[1,+∞)上的单调递增.
核心考点
试题【已知函数f(x)=px2+2x-q,对定义域中的所有x都满足f(x)+f(-x)=0,f(2)=5(1)求实数p,q的值;(2)判断函数f(x)在[1,+∞)上】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
若函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是(  )
A.B.C.D.
题型:单选题难度:简单| 查看答案
设函数f(x)=x+a


1-x
(a∈R)

(1)若a=1,求f(x)的值域;
(2)若不等式f(x)≤2对x∈[-8,-3]恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
题型:单选题难度:简单| 查看答案
函数f(x)=


4-x2
|x+3|-3
的图象关于(  )
A.y轴对称B.直线y=x对称
C.坐标原点对称D.x轴对称
题型:单选题难度:简单| 查看答案
已知f(x)是单调递增的一次函数,且f[f(x)]=4x+3.
(1)求f(x)的解析式;
(2)若集合A={x|f(x)•f(x+1)≤0且x∈Z},求集合A.
(3)若g(x)是定义在R的奇函数,且x<0时,g(x)=f(x),求g(x)的解析式.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.