当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有(  )A.f′(x)>0,g′...
题目
题型:单选题难度:简单来源:不详
已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
答案
由f(-x)=-f(x),g(-x)=g(x),
知f(x)为奇函数,g(x)为偶函数.
又x>0时,f′(x)>0,g′(x)>0,
知在区间(0,+∞)上f(x),g(x)均为增函数
由奇、偶函数的性质知,
在区间(-∞,0)上f(x)为增函数,g(x)为减函数
则当x<0时,f′(x)>0,g′(x)<0.
故选B
核心考点
试题【已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有(  )A.f′(x)>0,g′】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
函数f(x)=


4-x2
|x+3|-3
的图象关于(  )
A.y轴对称B.直线y=x对称
C.坐标原点对称D.x轴对称
题型:单选题难度:简单| 查看答案
已知f(x)是单调递增的一次函数,且f[f(x)]=4x+3.
(1)求f(x)的解析式;
(2)若集合A={x|f(x)•f(x+1)≤0且x∈Z},求集合A.
(3)若g(x)是定义在R的奇函数,且x<0时,g(x)=f(x),求g(x)的解析式.
题型:解答题难度:一般| 查看答案
定义在R上的偶函数f(x)满足f(x+1)=f(1-x)若当0≤x<1时,f(x)=2x,则f(log26)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在区间(-∞,+∞)上恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2-2|x|.
(1)判断并证明函数的奇偶性;
(2)依图象写出函数的单调区间,并对函数f(x)在(-1,0)上的单调性加以证明.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.