当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=1-23x+1.(1)求函数f(x)的定义域并判断函数f(x)的奇偶性;(2)用单调性定义证明:函数f(x)在其定义域上都是增函数;(3)解不...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=1-
2
3x+1

(1)求函数f(x)的定义域并判断函数f(x)的奇偶性;
(2)用单调性定义证明:函数f(x)在其定义域上都是增函数;
(3)解不等式:f(3m2-m+1)+f(2m-3)<0.
答案
(1)∵函数f(x)=1-
2
3x+1
=
3x+1-2
3x+1
=
3x-1
3x+1

可得3x>0,3x+1≠0,∴函数f(x)的定义域为R.
再根据f(-x)=
3-x-1
3-x+1
=
1-3x
1+3x
=-f(x),
故f(x)是定义在R上的奇函数.
(2)证明:任取x1<x2,则f(x1)-f(x2)=1-
2
3x1+1
-
(1-
2
3x2+1
)

=
2
3x2+1
-
2
3x1+1
=2×
3x1-3x2
(3x1+1)(3x2+1)

由题设x1<x2可得0<3x13x2,∴3x1-3x2<0,且 3x1+1>0,3x2+1>0,
故有 f(x1)<f(x2),
∴函数f(x)在其定义域R上是增函数.
(3)由f(3m2-m+1)+f(2m-3)<0,得f(3m2-m+1)<-f(2m-3).
∵函数f(x)为奇函数,
∴-f(2m-3)=f(3-2m),不等式即f(3m2-m+1)<f(3-2m).
由(2)已证得函数f(x)在R上是增函数,
∴f(3m2-m+1)<f(3-2m)等价于 3m2-m+1<3-2m,
即3m2+m-2<0,即(3m-2)(m+1)<0,∴-1<m<
2
3

不等式f(3m2-m+1)+f(2m-3)<0的解集为{m|-1<m<
2
3
}
核心考点
试题【已知函数f(x)=1-23x+1.(1)求函数f(x)的定义域并判断函数f(x)的奇偶性;(2)用单调性定义证明:函数f(x)在其定义域上都是增函数;(3)解不】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
偶函数f(x)在[0,+∞)上为减函数,不等式f(ax-1)>f(2+x2)恒成立,则a的取值范围是(  )
A.(-2,2


3
)
B.(-2


3
,2)
C.(-2


3
,2


3
)
D.(-2,2)
题型:单选题难度:一般| 查看答案
已知函数y=f(x+1)为偶函数,且f(x)在(1,+∞)上递减,设a=f(log210),b=f(log310),c=f(0.10.2),则a,b,c的大小关系正确的是(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b
题型:单选题难度:简单| 查看答案
已知关于x的不等式ex|x-a|≥x在x∈R上恒成立,则实数a的取值范围为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=
a•2x+a-1
2x+1

(1)确定a的值,使f(x)为奇函数;
(2)在(1)的条件下,解关于x的不等式f[loga(x+1)]+f[loga
1
3x-5
)]>0.
题型:解答题难度:一般| 查看答案
函数f(x)=





ax+3,(x≤1)
1
x
+1,(x>1)
,满足对任意定义域中的x1,x2(x1≠x2),[f(x1)-f(x2)](x1-x2)<0总成立,则实数a的取值范围是(  )
A.(-∞,0)B.[-1,0)C.(-1,0)D.(-1,+∞),
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.