当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 若为奇函数,且当时,,求使在上的的个数...
题目
题型:解答题难度:简单来源:不详



为奇函数,且当时,,求使上的的个数
答案
502个
解析

可求得
是以4为周期的周期函数,故的所有解是
,令,则
,∴在上共有502个使.… 12分
核心考点
试题【若为奇函数,且当时,,求使在上的的个数】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三






(1)求函数的解析式和定义域,并判断函数的奇偶性(不必说明理由);
(2)若方程恰有一个零点,求的值
题型:解答题难度:简单| 查看答案


(1)求的解析式;
(2)若对于实数,不等式恒成立,求t
的取值范围.
题型:解答题难度:简单| 查看答案

(1)求时,的解析式;
(2)若关于的方程有三个不同的解,求a的取值范围。
(3)是否存在正数、,当时,,且的值域为.若存在,求出a、b 的值;若不存在,说明理由
题型:解答题难度:简单| 查看答案

Ⅰ.求函数的定义域;
Ⅱ.判断函数的奇偶性;
Ⅲ.若时,函数的值域是,求实数的值
题型:解答题难度:简单| 查看答案
已知函数。(1)判断函数的奇偶性;
(2)设,求证:对于任意,都有
题型:解答题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.