当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)满足f(logax)=(x﹣x﹣1),其中a>0,a≠1(1)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m...
题目
题型:解答题难度:一般来源:期末题
已知函数f(x)满足f(logax)=(x﹣x﹣1),其中a>0,a≠1
(1)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m的集合;
(2)当x∈(﹣∞,2)时,f(x﹣4)的值恒为负数,求a的取值范围
答案
解:(1)根据题意,令logax=t,则x=at
所以,即
当a>1时,因为ax﹣a﹣x为增函数,且>0,所以f(x)在(﹣1,1)上为增函数;
当0<a<1时,因为ax﹣a﹣x为减函数,且<0,所以f(x)在(﹣1,1)上为增函数;
综上所述,f(x)在(﹣1,1)上为增函数.
又因为f(﹣x)==﹣f(x),故f(x)为奇函数.
所以f(1﹣m)+f(1﹣m2)<0f(1﹣m)<﹣f(1﹣m2
f(1﹣m)<f(m2﹣1)
由f(x)在(﹣1,1)上为增函数,可得
解得1<m<,即m的值的集合为{m|1<m<}
(2)由(1)可知,f(x)为增函数,则要使x∈(﹣∞,2),f(x)﹣4的值恒为负数,
只要f(2)﹣4≤0即可,即f(2)==<4,
又a>0解得
又a≠1,可得符合条件的a的取值范围是(2﹣,1)∪(1,2+).
核心考点
试题【已知函数f(x)满足f(logax)=(x﹣x﹣1),其中a>0,a≠1(1)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
一化工厂因排污趋向严重,2011年1月决定着手整治.经调研,该厂第一个月的污染度为60,整治后前四个月的污染度如下表;
污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f(x)=20|x﹣4|(x≥1),g(x)=
h(x)=30|log2x﹣2|(x≥1),其中x表示月数,f(x),g(x),h(x)分别表示污染度.(参考数据:lg2=0.3010,lg3=0.4771)
(Ⅰ)问选用哪个函数模拟比较合理,并说明理由;
(Ⅱ)如果环保部门要求该厂每月的排污度均不能超过60,若以比较合理的模拟函数预测,该厂最晚在何时开始进行再次整治?
题型:解答题难度:一般| 查看答案
已知函数
(1)求证:函数f(x)在(﹣∞,0]上是增函数.
(2)求函数在[﹣3,2]上的最大值与最小值.
题型:解答题难度:一般| 查看答案
设定义在R上的函数f(x)满足f(x)*f(x+2)=13,若f(1)=2,则f(99)=[     ]
A.13
B.2
C.
D.
题型:单选题难度:一般| 查看答案
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件),已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数)。
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案。
题型:解答题难度:一般| 查看答案
已知向量,函数
(1)求f(x)的最小正周期;
(2)当时,若f(x)=1,求x的值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.