当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)是R上的增函数,a,b∈R,证明:若f(a)+f(b)>f(-a)+f(-b),则a+b>0....
题目
题型:解答题难度:一般来源:不详
已知函数f(x)是R上的增函数,a,b∈R,证明:若f(a)+f(b)>f(-a)+f(-b),则a+b>0.
答案
先证原命题的逆否命题:
“若a+b≤0,则f(a)+f(b)≤f(-a)+f(-b)”为真.
证:a+b≤0⇒a≤-b,b≤-a
⇒f(a)≤f(-b),f(b)≤f(-a)
⇒f(a)+f(b)≤f(-b)+f(-a).
故原命题:若f(a)+f(b)>f(-a)+f(-b),则a+b>0也为真.
核心考点
试题【已知函数f(x)是R上的增函数,a,b∈R,证明:若f(a)+f(b)>f(-a)+f(-b),则a+b>0.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
函数y=log
1
2
(-x2+4x-3)
的单调递增区间是______.
题型:填空题难度:一般| 查看答案
已知函数f(x),g(x)分别由右表给出,则 f[g(2)]的值为(  )
题型:单选题难度:简单| 查看答案
题型:单选题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x123
f(x)412
已知函数f(x-1)=x2-3,则f(2)的值为(  )
A.-2B.0C.1D.6
我国发射的天宫一号飞行器需要建造隔热层.已知天宫一号建造的隔热层必须使用20年,每厘米厚的隔热层建造成本是6万元,天宫一号每年的能源消耗费用C(万元)与隔热层厚度x(厘米)满足关系式:C(x)=
k
3x+5
(0≤x≤10)
,若无隔热层,则每年能源消耗费用为8万元.设f(x)为隔热层建造费用与使用20年的能源消耗费用之和.
(I)求C(x)和f(x)的表达式;
(II)当陋热层修建多少厘米厚时,总费用f(x)最小,并求出最小值.
某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是______.