当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 给出封闭函数的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.若定义域D=(0,1),则函数①f1(x)=...
题目
题型:填空题难度:一般来源:不详
给出封闭函数的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.若定义域D=(0,1),则函数①f1(x)=3x-1;②f2(x)=-
1
2
x2-
1
2
x+1;③f3(x)=1-x;④f4(x)=x,其中在D上封闭的是______.(填序号即可)
答案
∵f1=0∉(0,1),
∴f1(x)在D上不封闭.
∵f2(x)=-x2-x+1在(0,1)上是减函数,
∴0=f2(1)<f2(x)<f2(0)=1,
∴f2(x)适合.
∵f3(x)=1-x在(0,1)上是减函数,
∴0=f3(1)<f3(x)<f3(0)=1,
∴f3(x)适合.
又∵f4(x)=x在(0,1)上是增函数,
且0=f4(0)<f4(x)<f4(1)=1,
∴f4(x)适合.
故答案为:②③④
核心考点
试题【给出封闭函数的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,则称函数y=f(x)在D上封闭.若定义域D=(0,1),则函数①f1(x)=】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=x2-(a+2)x+alnx(a∈R).
(I)求函数f(x)的单调区间;
(II)若a=4,y=f(x)的图象与直线y=m有三个交点,求m的取值范围(其中自然对数的底数e为无理数且e=2.271828…)
题型:解答题难度:一般| 查看答案
f(x)=
1
2x+


2
,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值是______.
题型:解答题难度:一般| 查看答案
使函数f(x)=x+2cosx在[0,
π
2
]上取最大值的x为______.
题型:填空题难度:一般| 查看答案
定义在实数集R上的函数f(x)=
1
3
x3+
1
2
(a-4)x2+2(2-a)x+a
与y轴的交点为A,点A到原点的距离不大于1;
(1)求a的范围;
(2)是否存在这样的区间,使对任意a,f(x)在该区间上为增函数?若存在,求出该区间,若不存在,说明理由.
题型:解答题难度:一般| 查看答案
已知f(
1
x
)+2f(x)=x(x≠0)

(1)求f(1)的值;    
(2)求f(x)的表达式.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.