当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 如果y=(x+2)2+5,那么(  )A.y最小值=5B.y最小值=5C.y最大值=5D.y最大值=5...
题目
题型:单选题难度:简单来源:不详
如果y=


(x+2)2+5
,那么(  )
A.y最小值=5B.y最小值=


5
C.y最大值=5D.y最大值=


5
答案
∵t=(x+2)2+5≥5,y=


t
在[0,+∞)上单调递增
y=


(x+2)2+5


5

当且仅当x=-2时取最小值


5

故选B.
核心考点
试题【如果y=(x+2)2+5,那么(  )A.y最小值=5B.y最小值=5C.y最大值=5D.y最大值=5】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知:函数f(x)=
x2+2x+a
x
,x∈[1,+∞],
(1)当a=-1时,判断并证明函数的单调性并求f(x)的最小值;
(2)若对任意x∈[1,+∞],f(x)>0都成立,试求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=





cosx,(x≥0)
f(x+π),(x<0)
,则f(-
3
)
的值为(  )
A.
1
2
B.


3
2
C.-
1
2
D.-


3
2
题型:单选题难度:简单| 查看答案
已知函数f(x)的定义域为[0,1],且同时满足:①f(1)=4;②若x∈[0,1],都有f(x)≥3;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)-3.
(1)求f(0)的值;
(2)当x∈(
1
3
,1]时,求证:f(x)<3x+3.
题型:解答题难度:一般| 查看答案
已知f(x)=log2
x+1
x
(x≠0).求
(1)f(-2)+f(1)的值.
(2)f(-2)+f(-
3
2
)+f(
1
2
)+f(1)
的值.
(3)通过这些值你能做出什么猜想?试证明你的猜想.
题型:解答题难度:一般| 查看答案
已知:函数f(x)=ax2+2bx(a,b∈R+
(1)若a=b=1,求:不等式log2f(x)≤3;
(2)若f(1)=1,求:
1
a
+
1
b
的最小值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.