当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能...
题目
题型:填空题难度:简单来源:镇江一模
设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为______.
答案
不妨设c为直角边,则M<a<c,M<b<c
∴ab>M2
由题意可得,





a2+b2=c2
lna+lnb>lnc






a2+b2=c2
ab>c

∵a2+b2≥2ab>2c
∴c2>2c即c>2
∴ab>2
∴M2≥2
M≥


2

故答案为:


2
核心考点
试题【设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=





-x2+2x+1,x≤1
x3+1,x>1
若f(2m+1)>f(m2-2),则实数m的取值范围是______.
题型:填空题难度:一般| 查看答案
已知定义在R上的函数f(x)满足f(1)=1,f(1-x)=1-f(x),2f(x)=f(4x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f(
1
33
)等于(  )
A.
1
4
B.
1
8
C.
1
16
D.
1
32
题型:单选题难度:简单| 查看答案
已知直线l:mx-2y+2m=0(m∈R)和椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),椭圆C的离心率为


2
2
,连接椭圆的四个顶点形成四边形的面积为2


2

(I)求椭圆C的方程;
(II)设直线l经过的定点为Q,过点Q作斜率为k的直线l′与椭圆C有两个不同的交点,求实数k的取值范围;
(Ⅲ)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式.
题型:解答题难度:一般| 查看答案
下列函数中,在(0,1)上单调递减的是(  )
A.y=
.
x-1 
  
.
B.y=(x+1)2C.y=x 
1
2
D.y=2x+1
题型:单选题难度:一般| 查看答案
对任意两个不相等的实数a,b,定义在R上的函数f(x)总有
f(a)-f(b)
b-a
>0
成立,则必有(  )
A.f(a)>f(b)B.f(a)<f(b)
C.f(x)在R上是增函数D.f(x)在R上是减函数
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.