当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知抛物线C:y2=4x,过点A(x0,0)(其中x0为常数,且x0>0)作直线l交抛物线于P,Q(点P在第一象限);(1)设点Q关于x轴的对称点为D,直线DP...
题目
题型:不详难度:来源:
已知抛物线C:y2=4x,过点A(x0,0)(其中x0为常数,且x0>0)作直线l交抛物线于P,Q(点P在第一象限);
(1)设点Q关于x轴的对称点为D,直线DP交x轴于点B,求证:B为定点;
(2)若x0=1,M1,M2,M3为抛物线C上的三点,且△M1M2M3的重心为A,求线段M2M3所在直线的斜率的取值范围.
答案
(1)证明:设P(x1,y1),Q(x2,y2),则D(x2,-y2),直线PD的方程为y-y1=
y1+y2
x1-x2
(x-x1)

令y=0,x=
x2y1+x1y2
y1+y2
=
y22
4
•y1+
y12
4
y2
y1+y2
=
y1y2
4

设l:y=k(x-x0),代入抛物线方程,得到ky2-4y-4kx0=0,∴y1y2=-4x0
∴x=x0,即B(x0,0)为定点;
(2)A(1,0),设lM1M2:y=kx+m,M1(x1′,y1′),M2(x2′,y2′),M3(x3′,y3′),M2M3中点E(xE′,yE′),
lM1M2:y=kx+m代入抛物线方程,可得k2x2+(2km-4)x+m2=0,
∴x1′+x2′=
4-2km
k2

∴y1′+y2′=
4
k

∴E(
2-km
k2
2
k
),
∵2


EF
=


FM1
,∴M1(3-
4-2km
k2
,-
4
k
),
∵M1在抛物线y2=4x上,
16
k2
=4(3-
4-2km
k2
)

∴3k2+2km=8,
又△>0得16-16km>0,∴km<1,
∴2km=8-3k2<2,
∴k2>2,
k>


2
k<-


2
核心考点
试题【已知抛物线C:y2=4x,过点A(x0,0)(其中x0为常数,且x0>0)作直线l交抛物线于P,Q(点P在第一象限);(1)设点Q关于x轴的对称点为D,直线DP】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
(文)如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于A(x1,y1),B(x2,y2)两点.
(1)求x1x2与y1y2的值;
(2)求证:OA⊥OB.
题型:不详难度:| 查看答案
长方形ABCD,AB=2


2
,BC=1,以AB的中点O为原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程:
(2)过点p(0,2)的直线m与(1)中椭圆只有一个公共点,求直线m的方程:
(3)过点p(0,2)的直线l交(1)中椭圆与M,N两点,是否存在直线l,使得以弦MN为直径的圆恰好过原点?若存在,直线l的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


2
2
,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)过点S(0,-
1
3
)
的动直线l交椭圆C1于A、B两点,试问:在直角坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过定点T?若存在求出T的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F(-1,0),离心率为


2
2
,过点F的直线l与椭圆C交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.
题型:不详难度:| 查看答案
已知双曲线C:x2-y2=1,l:y=kx+1
(1)求直线L的斜率的取值范围,使L与C分别有一个交点,两个交点,没有交点.
(2)若Q(1,1),试判断以Q为中点的弦是否存在,若存在,求出直线的方程;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.