当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=x2+lnx-ax.(1)若f(x)在(0,1)上是增函数,求a得取值范围;(2)在(1)的结论下,设g(x)=e2x+|ex-a|,x∈[0...
题目
题型:解答题难度:一般来源:青州市模拟
已知函数f(x)=x2+lnx-ax.
(1)若f(x)在(0,1)上是增函数,求a得取值范围;
(2)在(1)的结论下,设g(x)=e2x+|ex-a|,x∈[0,ln3],求函数g(x)的最小值.
答案
(1)f"(x)=2x+
1
x
-a,(1分)
∵f(x)在(0,1)上是增函数,
∴2x+
1
x
-a>0在(0,1)上恒成立,即a<2x+
1
x
恒成立.
∵2x+
1
x
2


2
(当且仅当x=


2
2
时取等号),所以a<2


2
.(4分)
当a=2


2
时,易知f(x)在(0,1)上也是增函数,所以a≤2


2
.(5分)
(2)设t=ex,则h(t)=t2+|t-a|,
∵x∈[0,ln3],∴t∈[1,3].(7分)
当a≤1时,h(t)=t2+t-a,在区间[1,3]上是增函数,所以h(t)的最小值为h(1)=2-a.(9分)
当1<a≤2


2
时,h(t)=





t2-t+a    1≤t<a
t2+t-a    a≤t≤3

因为函数h(t)在区间[a,3]上是增函数,在区间[1,a]上也是增函数,所以h(t)在[1,3]上为增函数,
所以h(t)的最小值为h(1)=a.(14分)
所以,当a≤1时,g(x)的最小值为2-a;当1<a≤2


2
时,g(x)的最小值为a.(15分)
核心考点
试题【已知函数f(x)=x2+lnx-ax.(1)若f(x)在(0,1)上是增函数,求a得取值范围;(2)在(1)的结论下,设g(x)=e2x+|ex-a|,x∈[0】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数y=f(x)的图象与函数y=x2(x≥0)的图象关于直线y=x对称,那么下列情形不可能出现的是(  )
A.函数y=f(x)有最小值
B.函数y=f(x)过点(4,2)
C.函数y=f(x)是偶函数
D.函数y=f(x)在其定义域上是增函数
题型:单选题难度:一般| 查看答案
若函数f(x)在[a,b]上是减函数,f-1(x)是其反函数,且方程f(x)=0有解,则(  )
A.f-1(x)=0有解,且a≤f-1(x)≤b
B.f-1(0)有意义,且a≤f-1(0)≤b
C.f-1(x)=0有解,b≤f-1(x)≤a
D.f-1(0)有意义,且b≤f-1(0)≤a
题型:单选题难度:一般| 查看答案
已知函数f(x)为R上的减函数,则满足f(x2-3x-3)<f(1)的实数x的取值范围是(  )
A.{x|-1<x<4}B.{x|x<-1或x>4}C.{x|x>-1}D.{x|x<4}
题型:单选题难度:简单| 查看答案
已知y=f(x)是定义在R上的函数,且对任意x∈R,都有:f(x+2)=
1-f(x)
1+f(x)
,又f(1)=
1
2
,f(2)=
1
4
,则f(2007)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=loga(x+1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象:
(1)写出g(x)的解析式
(2)记F(x)=f(x)+g(x),讨论F(x)的单调性
(3)若a>1,x∈[0,1)时,总有F(x)=f(x)+g(x)≥m成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.