当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 设定义在R上的函数f(x),且f(x)≠0,满足当x>0时,f(x)>1,且对任意的x、y∈R,有f(x+y)=f(x)f(y),f(1)=2.(1)求证:f(...
题目
题型:解答题难度:一般来源:不详
设定义在R上的函数f(x),且f(x)≠0,满足当x>0时,f(x)>1,且对任意的x、y∈R,有f(x+y)=f(x)f(y),f(1)=2.
(1)求证:f(x)在R上为单调增函数;
(2)解不等式f(3x-x2)>4;
(3)解方程[f(x)]2+
1
2
f(x+3)=f(2)+1
答案
(1)设x>y,∵f(x+y)=f(x)f(y),∴f(x)=
f(x+y)
f(y)

令x=x-y,代入上式得,f(x-y)=
f(x)
f(y)

∵x>y,∴x-y>0,∵当x>0时,f(x)>1,
∵f(x-y)>1,∴
f(x)
f(y)
>1,则f(x)>f(y),
∴f(x)在R上为单调增函数;
(2)∵f(1)=2,f(x+y)=f(x)f(y),∴f(2)=f(1+1)=f(1)f(1)=4,
由于f(3x-x2)>4,∴f(3x-x2)>f(2),
又∵f(x)在R上为单调增函数,∴3x-x2-2>0,解得1<x<2,
∴不等式的解集是(1,2);
(3)令x=0,y=1代入f(x+y)=f(x)f(y),得f(0+1)=f(0)f(1)=f(1),
∵f(1)=2,∴f(0)=1,
令x=2,y=1代入f(x+y)=f(x)f(y),得f(2+1)=f(2)f(1)=8,即f(3)=8,
∴f(x+3)=f(x)f(3)=8f(x),代入[f(x)]2+
1
2
f(x+3)=f(2)+1
得,
[f(x)]2+4f(x)-5=0,解得f(x)=1或-5,
令y=-x代入f(0)=f(x)f(-x)=1,即f(-x)=
1
f(x)

∵f(x)在R上为单调增函数,f(0)=1;
∴f(x)>0,则f(x)=-5舍去,故f(x)=1,即x=0,
所以所求的方程解是0.
核心考点
试题【设定义在R上的函数f(x),且f(x)≠0,满足当x>0时,f(x)>1,且对任意的x、y∈R,有f(x+y)=f(x)f(y),f(1)=2.(1)求证:f(】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
某轮船在海面上匀速行驶,该轮船每小时使用燃料的费用(单位:元)和轮船速度(单位:海里/时)的平方成正比.当速度是10海里/时它的燃料费用是每小时30元,其余费用(不论速度如何)都是每小时480元,如果甲、乙两地相距100海里,
(1)求轮船从甲地行驶到乙地,所需的总费用与船速的关系式;
(2)问船速为多少时,总费用最低?并求出最低费用是多少.
题型:解答题难度:一般| 查看答案
函数y=ax在[0,1]上的最大值与最小值和为3,则函数y=3•a2x-1在[0,1]上的最大值是 ______.
题型:填空题难度:简单| 查看答案
函数y=
2
x
,x∈[2,6]
的最大值为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=





2-x,x∈(-∞,1)
x2,x∈[1,+∞)
,那么f(-1)=______,若f(x)>4则x的取值范围是______.
题型:填空题难度:一般| 查看答案
已知(3x+y)2001+x2001+4x+y=0,则4x+y的值为______..
题型:填空题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.