题目
题型:单选题难度:简单来源:门头沟区一模
A.f(x)是偶函数且在(0,+∞)上单调递减 |
B.f(x)是偶函数且在(0,+∞)上单调递增 |
C.f(x)是奇函数且单调递减 |
D.f(x)是奇函数且单调递增 |
答案
又∵函数对一切x、y都有f(x+y)=f(x)+f(y),
∴令x=y=0,得f(0)=2f(0),∴f(0)=0.
再令y=-x,得f(0)=f(x)+f(-x),
∴f(-x)=-f(x),
∴f(x)为奇函数.
任取x1<x2,x2-x1>0,则f(x2-x1)>0
∴f(x2)+f(-x1)>0;
对f(x+y)=f(x)+f(y)取x=y=0得:f(0)=0,
再取y=-x得f(x)+f(-x)=0即f(-x)=-f(x),
∴有f(x2)-f(x1)>0
∴f(x2)>f(x1)
∴f(x)在R上递增.
故选D.
核心考点
试题【已知函数f(x)满足:①∀x,y∈R,f(x+y)=f(x)+f(y),②∀x>0,f(x)>0,则( )A.f(x)是偶函数且在(0,+∞)上单调递减B.f】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
A.2 | B.3 | C.6 | D.9 |
|
|
(1)求证:f(x)在R上是增函数
(2)若f(k•3x)+f(3x-9x-2)<0对∀x∈R恒成立,求实数k的取值范围.
(1)若函数f(x)为理想函数,求f(0)的值;
(2)判断函数g(x)=2x-1(x∈[0,1])是否为理想函数,并予以证明;
(3)若函数f(x)为理想函数,假定?x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求证f(x0)=x0.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”求出所有a的值;若不具有“P(a)性质”,请说明理由.
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)设函数y=g(x)具有“P(±1)性质”,且当-