当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.(1)求实数a的取值范围;(2)设x0≥1,f(x0)≥1,且f(f(x0))=x0,求证:f(x...
题目
题型:解答题难度:一般来源:广州模拟
设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.
(1)求实数a的取值范围;
(2)设x0≥1,f(x0)≥1,且f(f(x0))=x0,求证:f(x0)=x0
答案
(1)f′(x)=3x2-a
若f(x)在[1,+∞)上是单调递减函数,
则须y′≤0,即α≥3x2恒成立,
这样的实数a不存在,
故f(x)在[1,+∞)上不可能是单调递减函数;
若f(x)在[1,+∞)]上是单调递增函数,则a≤3x2恒成立,
由于x∈[1,+∞),故3x2≥3,解可得a≤3,
又由a>0,则a的取值范围是0<a≤3;
(2)(反证法)由(1)可知f(x)在[1,+∞)上只能为单调递增函数.
假设f(x0)≠x0,若1≤x0<f(x0),则f(x0)<f(f(x0))=x0,矛盾; …(8分)
若1≤f(x0)<x0,则f(f(x0))<f(x0),即x0<f(x0),矛盾,…(10分)
故只有f(x0)=x0成立.
核心考点
试题【设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.(1)求实数a的取值范围;(2)设x0≥1,f(x0)≥1,且f(f(x0))=x0,求证:f(x】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
y=
1-x
1+x
的递减区间是______,y=


1-x
1+x
的递减区间是______.
题型:填空题难度:一般| 查看答案
设y=f(x)是R上的减函数,则y=f(x2-2x+3)的单调递减区间______.
题型:填空题难度:一般| 查看答案
已知直线l:y=kx,圆C:x2+y2-2x-2y+1=0,直线l交圆于P、Q两点,点M(0,b)满足MP⊥MQ.
(I)当b=1时,求k的值;
(II)若k>3时,求b的取值范围.
题型:解答题难度:一般| 查看答案
已知f(x)的定义域为x∈R且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,那么,当x>1时,f(x)的递减区间是(  )
A.[
5
4
,+∞)
B.[1,
5
4
]
C.[
7
4
,+∞)
D.(1,
7
4
]
题型:单选题难度:简单| 查看答案
定义在R上的函数f(x)满足:对任意x、y∈R都有f(x)+f(y)=f( x+y).
(1)求证:函数f(x)是奇函数;
(2)如果当x∈(-∞,0)时,有f(x)>0,求证:f(x)在(-1,1)上是单调递减函数;
(3)在满足条件(2)求不等式f(1-2a)+f(4-a2)>0的a的集合.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.