当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=x2+2ax+2(1)当a=-2时,写出函数f(x)的单调区间.(2)求实数a的取值范围,是函数f(x)在区间[-5,5]上是单调增函数.(3...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=x2+2ax+2
(1)当a=-2时,写出函数f(x)的单调区间.
(2)求实数a的取值范围,是函数f(x)在区间[-5,5]上是单调增函数.
(3)若x∈[-5,5],求函数f(x)的最小值h(a).
答案
(1)当a=-2时,f(x)=x2-4x+2=(x-2)2-2,对称轴为x=2,
∴函数f(x)在(-∞,2]上单调递减,在[2,+∞)上单调递增.
(2)f(x)=x2+2ax+2=(x+a)2+2-a2,对称轴为x=-a,抛物线开口向上,
要使函数f(x)在区间[-5,5]上是单调增函数,则区间[-5,5]在对称轴的右侧,
即满足-a≤-5,即a≥5.
(3)f(x)=x2+2ax+2=(x+a)2+2-a2,对称轴为x=-a,抛物线开口向上,
①若-a≤-5,即a≥5.此时f(x)在区间[-5,5]上单调递增,
∴最小值为f(-5)=27-10a,
即h(a)=f(-5)=27-10a.
②若-5<-a<5,此时最小值为f(-a)=2-a2,即h(a)=f(-a)=2-a2
③若-a≥5,即a≤-5.此时f(x)在区间[-5,5]上单调递减,
∴最小值为f(5)=27+10a,
即h(a)=f(5)=27+10a.
综上:h(a)=





27-10a,a≥5
2-a2,-5<a<a
27+10a,a≤-5
核心考点
试题【已知函数f(x)=x2+2ax+2(1)当a=-2时,写出函数f(x)的单调区间.(2)求实数a的取值范围,是函数f(x)在区间[-5,5]上是单调增函数.(3】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=





x2+1,x≤0
1,x>0
,若f(x-4)>f(2x-3),则实数x的取值范围是______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x-
1
x
(x>0);
(Ⅰ)试判断函数f(x)的单调性,并用单调性的定义证明;
(Ⅱ)设m∈R,试比较f(-m2+2m+3)与f(|m|+5)的大小.
题型:解答题难度:一般| 查看答案
已知函数f(x)=|1-
1
x
丨(x>0)
(1)当0<a<b且f(a)=f(b)时,①求
1
a
+
1
b
的值;②求
1
a2
+
1
b2
的取值范围;
(2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
已知函数f(x)=





x2-10,x>0
0,x=0
x2+10,x<0
,则f(f(3))=______.
题型:填空题难度:一般| 查看答案
f(x)=





sin(
π
2
x+
π
4
)
(x≤2008)
f(x-5)(x>2008)
,则f(2007)+f(2008)+f(2009)+f(2010)=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.