当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=3-|x|,g(x)=x2-4x+3,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)...
题目
题型:单选题难度:一般来源:不详
已知函数f(x)=3-|x|,g(x)=x2-4x+3,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),则F(x)在[-3,3](  )
A.有最大值3,最小值-1
B.有最大值7-2


7
,无最小值
C.有最大值3,无最小值
D.无最大值,也无最小值
答案
根据题意,F(x)实际是f(x)与g(x)的较小者的值;
在同一坐标系中先画出f(x)与g(x)的图象,比较大小,然后根据定义画出F(x),就容易看出F(x)的最值,
如图可得:F(x)的最大值为3,最小值为-1;
故选A.
核心考点
试题【已知函数f(x)=3-|x|,g(x)=x2-4x+3,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
判断函数f(x)=-
2
x
+1
在(-∞,0)上是增函数还是减函数,并证明你的结论.
题型:解答题难度:一般| 查看答案
已知函数f(x)=





1-
1
x
x≥1
1
x
-10<x<1.

(I)当0<a<b,且f(a)=f(b)时,求
1
a
+
1
b
的值;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax2-2


4+2b-b2
x
g(x)=-


1-(x-a)2
(a,b∈R).
(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(3)对满足(2)中的条件的整数对(a,b),奇函数h(x)的定义域和值域都是区间[-k,k],且x∈[-k,0]时,h(x)=f(x),求k的值.
题型:解答题难度:一般| 查看答案
某商品在近100天内,商品的单价f(t)(元)与时间t(天)的函数关系式如下:f(t)=





at+b,0≤t≤40,t∈Z
32,40<t≤100,t∈Z.
已知第20天时,该商品的单价为27元,40天时,该商品的单价为32元.
(1)求出实数a,b的值:
(2)已知该种商品的销售量与时间t(天)的函数关系式为g(t)=-
1
3
t+
112
3
(0≤t≤100,t∈Z)
.求这种商品在这100天内哪一天的销售额y最高?最高为多少(精确到1元)?
题型:解答题难度:一般| 查看答案
设f(x)是定义在[-1,1]上的奇函数,且对任意a、b∈[-1,1],当a+b≠0时,都有
f(a)+f(b)
a+b
>0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x-
1
2
)<f(x-
1
4
);
(3)记P={x|y=f(x-c)},Q={x|y=f(x-c2)},且P∩Q=∅,求c的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.