当前位置:初中试题 > 数学试题 > 二次函数的应用 > 抛物线y=12x2+(k+12)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2...
题目
题型:不详难度:来源:
抛物线y=
1
2
x2+(k+
1
2
)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2=OC2+16.
(1)求此抛物线的解析式;
(2)设M、N是抛物线在x轴上方的两点,且到x轴的距离均为1,点P是抛物线的顶点,问:过M、N、C三点的圆与直线CP是否只有一个公共点C?试证明你的结论.
答案
(1)∵(OA+OB)2=OC2+16,
∴(-x1+x22=OC2+16,
∴4(k+
1
2
2-4×2×(k+1)=(k+1)2+16,
解得k1=-2,k2=4.
∵x1<0<x2
∴x1•x2=2(k+1)<0,
即k<-1,
∴k=-2.
∴抛物线解析式为y=
1
2
x2-
3
2
x-1

(2)过M、N、C三点的圆与直线CP只有一个公共点C.证明如下:
如图,∵抛物线上的点M、N在x轴上方,且到x轴距离均为1,设MN交y轴于E,
则M(-1,1),N(4,1),且C(0,-1),P(
3
2
,-
17
8
),
在Rt△MEC中,MC2=5,同理NC2=20,
又∵MN2=25,MN2-MC2=NC2
∴∠MCN=90°.
故MN是过M、N、C三点的圆的直径,圆心D(
3
2
,1),
作CF⊥DP于F,连接CD,
则CFDE为矩形.
FD=CE=2,CF=ED=
3
2

又∵PF=
9
8

在Rt△CFP中,CP2=CF2+PF2=(
3
2
2+(
9
8
2=
225
64

在△CDP中,DP2-CD2=(
25
8
2-(
5
2
2=
225
64
=CP2
即CP2+CD2=DP2
∴CP⊥CD,直线CP与⊙D相切于点C,
故直线CP和过M、N、C三点的圆只有一个公共点C.
核心考点
试题【抛物线y=12x2+(k+12)x+(k+1)(k为常数)与x轴交于A(x1,0)、B(x2,0)(x1<0<x2)两点,与y轴交于C点,且满足(OA+OB)2】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
二次函数y=ax2+bx+c的部分图象如图所示,其中图象与x轴交于点A(-1,0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式;
(2)将此二次函数的解析式写成y=a(x-h)2+k的形式,并直接写出此二次函数图象的顶点坐标以及它与x轴的另一个交点B的坐标.
题型:不详难度:| 查看答案
某建筑物的窗口如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m,当半圆的半径为多少时,窗户通过的光线最多?此时,窗户的面积是多少(结果精确到0.01m)?
题型:不详难度:| 查看答案
如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=______米.
题型:不详难度:| 查看答案
如图1,在平面直角坐标系中,抛物线y=-
5
6
x2+
13
6
x+c与y轴交于点D,与x轴负半轴交于点B(-1,0),直线y=
1
2
x+b与抛物线交于A、B两点.作△ABD的外接圆⊙M交x轴正半轴于点C,连结CD交AB于点E.
(1)求b、c的值;
(2)求:①点A的坐标;②∠AEC的正切值;
(3)将△BOD绕平面内一点旋转90°,使得该三角形的对应顶点中的两个点落在已知抛物线上(如图2),请直接写出旋转中心的坐标.
题型:不详难度:| 查看答案
如图,已知二次函数y=ax2-4x+c的图象与x轴交于点A(-1,0)、点C,与y轴交于点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标,并求出△ABP周长的最小值;
(3)在线段AC上是否存在点E,使以C、P、E为顶点的三角形与三角形ABC相似?若存在写出所有点E的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.