当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知二次函数y=ax2-4x+c的图象与x轴交于点A(-1,0)、点C,与y轴交于点B(0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称...
题目
题型:不详难度:来源:
如图,已知二次函数y=ax2-4x+c的图象与x轴交于点A(-1,0)、点C,与y轴交于点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标,并求出△ABP周长的最小值;
(3)在线段AC上是否存在点E,使以C、P、E为顶点的三角形与三角形ABC相似?若存在写出所有点E的坐标;若不存在,请说明理由.
答案
(1)根据题意,得





0=a×(-1)2-4×(-1)+c
-5=a×02-4××0+c

解得





a=1
c=-5

故二次函数的表达式为y=x2-4x-5;

(2)令y=0,得二次函数y=x2-4x-5的图象与x轴
的另一个交点坐标C(5,0).
由于P是对称轴x=2上一点,
连接AB,由于AB=


OA2+BO2
=


26

要使△ABP的周长最小,只要PA+PB最小.
由于点A与点C关于对称轴x=2对称,连接BC交对称轴于点P,
则PA+PB=BP+PC=BC,根据两点之间,线段最短,可得PA+PB的最小值为BC.
因而BC与对称轴x=2的交点P就是所求的点.
设直线BC的解析式为y=kx+b,根据题意,可得:





b=-5
0=5k+b

解得





k=1
b=-5

所以直线BC的解析式为y=x-5.
因此直线BC与对称轴x=2的交点坐标是方程组的解,
解得





x=2
y=-3

所求的点P的坐标为(2,-3).

(3)存在.
∵A(-1,0),C(5,0),
∴AC=6,
∵P(2,-3),C(5,0),
∴PC=3


2

∵B(0,-5),C(5,0),
∴BC=5


2

当△PEC△ABC,
EC
BC
=
PC
AC

EC
5


2
=
3


2
6

解得:EC=5,
∴E(0,0);
当△EPC△ABC,
EC
AC
=
PC
BC

EC
6
=
3


2
5


2

解得:EC=3.6,
∴OE=5-3.6=1.4,
故E点坐标为:(1.4,0),
综上所述:以C、P、E为顶点的三角形与三角形ABC相似,点E的坐标为:(0,0),(1.4,0).
核心考点
试题【如图,已知二次函数y=ax2-4x+c的图象与x轴交于点A(-1,0)、点C,与y轴交于点B(0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C(0,-3)与x轴正半轴相交于点B,且OB=OC.
①求B点坐标;
②求函数的解析式及最小值;
③写出y随x的增大而减小的自变量x的取值范围.
题型:不详难度:| 查看答案
如图1,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)2+m交直线y=kx于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)
(1)请写出h与m之间的关系;(用含的k式子表示)
(2)当点A运动到使EF与x轴平行时(如图2),求线段AC与OF的比值;
(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的比值.
题型:不详难度:| 查看答案
已知:如图,等腰梯形ABCD的边BC在x轴上,点A在y轴的正方向上,A(0,6),D(4,6),且AB=2


10

(1)求点B的坐标;
(2)求经过B、D两点的抛物线y=ax2+bx+6的解析式;
(3)在(2)中所求的抛物线上是否存在一点P,使得S△PBC=
1
2
S梯形ABCD
?若存在,请求出该点坐标,若不存在,请说明理由.
题型:不详难度:| 查看答案
如图1、2,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A.
(1)求此抛物线的解析式;
(2)如图1,若M(0,1),过点A的直线与x轴交于点D(4,0).直角梯形EFGH的上底EF与线段CD重合,∠FEH=90°,EFHG,EF=EH=1.直角梯形EFGH从点D开始,沿射线DA方向匀速运动,运动的速度为1个长度单位/秒,在运动过程中腰FG与直线AD始终重合,设运动时间为t秒.当t为何值时,以M、O、H、E为顶点的四边形是特殊的平行四边形;
(3)如图2,抛物线顶点为K,KI⊥x轴于I点,一块三角板直角顶点P在线段KI上滑动,且一直角边过A点,另一直角边与x轴交于Q(m,0),请求出实数m的变化范围,并说明理由.
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c的图象过(1,-1)、(2,1)、(-1,1)三点,求二次函数的解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.