当前位置:高中试题 > 数学试题 > 求函数解析式 > 已知f(x)=x2+C,且f[f(x)]=f(x2+1)(1)设g(x)=f[(x)],求g(x)的解析式.(2)设ϑ(x)=g(x)-λf(x),试问是否存在...
题目
题型:解答题难度:一般来源:不详
已知f(x)=x2+C,且f[f(x)]=f(x2+1)
(1)设g(x)=f[(x)],求g(x)的解析式.
(2)设ϑ(x)=g(x)-λf(x),试问是否存在实数λ,使ϑ(x)在(-∞,-1)上是减函数,并且在(-1,0)上是增函数.
答案
(1)由题意可知:
f(x)=x2+C,且f[f(x)]=f(x2+1)
∴(x2+c)2+c=(x2+1)2+c
∴x4+2cx2+c2=x4+2x2+1





2c=2
c2=1
,解得:c=1.
∴f(x)=x2+1,∵g(x)=f[(x)],
∴函数g(x)的解析式为:g(x)=x4+2x2+2.
(2)由(1)可知:f(x)=x2+1、g(x)=x4+2x2+2,
∵ϑ(x)=g(x)-λf(x),
∴θ(x)=x4+(2-λ)x2+2-λ,∴θ′(x)=4x3+2(2-λ)x
假设存在使的ϑ(x)在(-∞,-1)上是减函数,并且在(-1,0)上是增函数.
则θ′(-1)=0
∴-4-2(2-λ)=0,∴λ=4.
此时:θ(x)=x4-2x2-2,∴θ′(x)=4x3-4x.
由θ′(x)>0解得,x∈(-1,0)∪(1,+∞);
由θ′(x)<0解得,x∈(-∞,-1)∪(0,1).
故满足题意.
所以存在λ=4使的ϑ(x)在(-∞,-1)上是减函数,并且在(-1,0)上是增函数.
核心考点
试题【已知f(x)=x2+C,且f[f(x)]=f(x2+1)(1)设g(x)=f[(x)],求g(x)的解析式.(2)设ϑ(x)=g(x)-λf(x),试问是否存在】;主要考察你对求函数解析式等知识点的理解。[详细]
举一反三
对定义域分别是F、G的函数y=f(x)、y=g(x),规定:函数h(x)=





f(x)+g(x),当x∈F且x∈G 
f(x),当x∈F且x∉G 
g(x),当x∉F且x∈G

已知函数f(x)=x2,g(x)=alnx(a∈R).
(1)求函数h(x)的解析式;
(2)对于实数a,函数h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.
题型:解答题难度:一般| 查看答案
对定义域分别是Df、Dg的函数y=f(x),y=g(x),规定:函数h(x)=





f(x)•g(x)    当x∈Df且x∈Dg
1      当x∈Df且x∉Dg
-1   当x∉Df且x∈Dg

(1)若f(α)=sinα•cosα,g(α)=cscα,写出h(α)的解析式;
(2)写出问题(1)中h(α)的取值范围;
(3)若g(x)=f(x+α),其中α是常数,且α∈[0,π],请设计一个定义域为R的函数y=f(x),及一个α的值,使得h(x)=cos4x,并予以证明.
题型:解答题难度:一般| 查看答案
已知函数f(x)=2x3+ax与g(x)=bx2+c的图象都经过点P(2,0),且在点P处有公切线,求f(x),g(x)的表达式及点P处的公切线方程.
题型:解答题难度:一般| 查看答案
已知二次函数y=f(x)的图象经过坐标原点,与x轴的另一个交点为(
2
3
,0
),且f(
1
3
)=-
1
3
,数列{an} 的前n项的和为Sn,点(n,Sn)在函数y=f(x)的图象上.
(1)求函数y=f(x)的解析式;
(2)求数列{an} 的通项公式;
(3)设bn=
an
2n
,求数列 {bn}的前n项和Tn
题型:解答题难度:一般| 查看答案
已知抛物线y=ax2+bx+c通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a,b,c的值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.