当前位置:高中试题 > 数学试题 > 分段函数 > 设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-2.(1)求f(0);(2)证明f(x)是奇函数;(...
题目
题型:解答题难度:一般来源:不详
设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-2.
(1)求f(0);
(2)证明f(x)是奇函数;
(3)试问在x∈[-3,3]时f(x)是否有最大、最小值?如果有,请求出来,如果没有,说明理由;
(4)解不等式
1
2
f(x2)-f(x)>
1
2
f(3x)
答案
证明:(1)由f(x+y)=f(x)+f(y),
得f[x+(-x)]=f(x)+f(-x),
∴f(x)+f(-x)=f(0).
又f(0+0)=f(0)+f(0),∴f(0)=0.
(2)从而有f(x)+f(-x)=0.∴f(-x)=-f(x).
∴f(x)是奇函数.
(3)任取x1、x2∈R,且x1<x2
则f(x1)-f(x2)=f(x1)-f[x1+(x2-x1)]=f(x1)-[f(x1)+f(x2-x1)]=-f(x2-x1).
由x1<x2,∴x2-x1>0.∴f(x2-x1)<0.
∴-f(x2-x1)>0,即f(x1)>f(x2),
从而f(x)在R上是减函数.
由于f(x)在R上是减函数,
故f(x)在[-3,3]上的最大值是f(-3),
最小值为f(3).由f(1)=-2,
得f(3)=f(1+2)=f(1)+f(2)
=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)
=3×(-2)=-6,f(-3)=-f(3)=6.
∴最大值为6,最小值为-6.
(4)由
1
2
f(x2)-f(x)>
1
2
f(3x)
,f
(x2)-f(3x)>2f(x),
由已知得:f[2(x)]=2f(x)∴f(x2-3x)>f(2x),
由(2)中的单调性转化为x2-3x<2x.即x2-5x<0,
∴x∈(0,5).
核心考点
试题【设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-2.(1)求f(0);(2)证明f(x)是奇函数;(】;主要考察你对分段函数等知识点的理解。[详细]
举一反三
已知函数f(x)满足:f(p+q)=f(p)•f(q),f(1)=2,则:
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+
f(8)
f(7)
+…+
f(2014)
f(2013)
=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=





1,x<0
x2+1,x≥0
,则不等式f(1-x2)=f(2x)的解集是(  )
A.{x|x≤-1}B.{-1+


2
}
C.{x|x≤-1或x=-1+


2
}
D.{x|x<-1或x=-1+


2
}
题型:单选题难度:简单| 查看答案
已知奇函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-
2
3

(1)求证:f(x)是R上的减函数.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)若f(x)+f(x-3)≤-2,求实数x的取值范围.
题型:解答题难度:一般| 查看答案
若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0满足f(
x
y
)=f(x)-f(y).

(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+5)-f(
1
x
)≤2.
题型:解答题难度:一般| 查看答案
设实数x,y满足条件





x+y-2≥0
y≤x-1
y≥0
,则z=
y
x
的取值范围是(  )
A.[0,+∞)B.[0,
3
2
]
C.[0,1)D.[0,1]
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.