当前位置:初中试题 > 数学试题 > 三角形中位线 > 如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若...
题目
题型:柳州难度:来源:
如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.
(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.
(2)若cos∠C=
4
5
,DF=3,求⊙O的半径.魔方格
答案

魔方格
(1)证明:
(方法一)连接AC.
∵AB是⊙O的直径,且AB⊥CD于E,
由垂径定理得,点E是CD的中点;
又∵M是AD的中点,
∴ME是△DAC的中位线,
∴MNAC.
∵AB是⊙O的直径,∴∠ACB=90°.
∴∠MNB=90°,即MN⊥BC;
(方法二)∵AB⊥CD,∴∠AED=∠BEC=90°.
M是AD的中点,
∴ME=AM,即有∠MEA=∠A.
∵∠MEA=∠BEN,∠C=∠A,
∴∠C=∠BEN.
又∵∠C+∠CBE=90°,
∴∠CBE+∠BEN=90°,
∴∠BNE=90°,即MN⊥BC;
(方法三)∵AB⊥CD,∴∠AED=90°.
由于M是AD的中点,
∴ME=MD,即有∠MED=∠EDM.
又∵∠CBE与∠EDA同对




AC
,∴∠CBE=∠EDA.
∵∠MED=∠NEC,
∴∠NEC=∠CBE.
∵∠C+∠CBE=90°,
∴∠NEC+∠C=90°,
即有∠CNE=90°,即MN⊥BC.

(2)连接BD.
∵∠BCD与∠BAF同对




BD
,∴∠C=∠A,
∴cos∠A=cos∠C=
4
5

魔方格

∵BF是⊙O的切线,∴∠ABF=90°.
在Rt△ABF中,cos∠A=
AB
AF
=
4
5

设AB=4x,则AF=5x,由勾股定理得:BF=3x.
∵AB是⊙O的直径,∴BD⊥AD,
∴△ABF△BDF,
BF
AF
=
DF
BF

3x
5x
=
3
3x

x=
5
3

∴直径AB=4x=4×
5
3
=
20
3

则⊙O的半径为
10
3
核心考点
试题【如图,AB为⊙O的直径,且弦CD⊥AB于E,过点B的切线与AD的延长线交于点F.(1)若M是AD的中点,连接ME并延长ME交BC于N.求证:MN⊥BC.(2)若】;主要考察你对三角形中位线等知识点的理解。[详细]
举一反三
如图,平行四边形ABCD中,E是AD的中点,连接OE,则△DOE的面积与平行四边形ABCD的面积之比是(  )
A.
1
2
B.
1
3
C.
1
7
D.
1
8
魔方格
题型:不详难度:| 查看答案
已知△ABC三边的长分别为7cm、9cm、10cm,那么这个三角形的三条中位线所围成的三角形的周长为______cm.
题型:不详难度:| 查看答案
如图所示,已知梯形ABCD中,ABCD,AD=BC,中位线EF=15cm,∠DAB=60°,且AC平分∠DAB,则梯形的周长是______cm.魔方格
题型:不详难度:| 查看答案
已知△ABC(如图所示).
(1)在图中找出重心O;
(2)设BC,AC,AB边的中点为M,N,G,度量OM和OA,ON与OB,OG与OC,根据度量的结果,猜想三角形的重心到三角形顶点的距离与到对边中点的距离之间的距离,并给予证明.魔方格
题型:不详难度:| 查看答案
如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.
(1)求证:△CBE△AFB;
(2)当
BE
FB
=
5
8
时,求
CB
AD
的值.魔方格
题型:吉林难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.