当前位置:初中试题 > 数学试题 > 圆与正多边形 > 如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是______边形....
题目
题型:不详难度:来源:
如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是______边形.
答案
连接QO,PO,
∵QO=PO,
∴∠OPQ=∠OQP,
∵∠PMQ=40°,
∴∠POQ=80°,
∴∠OPQ+∠OQP=180°-80°=100°,
∴∠OPQ=∠OQP=50°,
∴∠A+∠APO=∠POM=10°+50°=60°,
∵PO=OM,
∴△POM是等边三角形,
∴PM=OP=OM,
∴以PM为边作圆的内接正多边形,则这个正多边形是正六边形.
故答案为:6.
核心考点
试题【如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是______边形.】;主要考察你对圆与正多边形等知识点的理解。[详细]
举一反三
某课题学习在探讨一团周长为4a的线圈时,发现了如下两个命题:
命题1:如图①,当线圈做成正三角形ABC时,能被半径为a的圆形纸片完全盖住.
命题2:如图②,当线圈做成正方形ABCD时,能被半径为a的圆形纸片完全盖住.
请你继续探究下列几个问题:
(1)如图③,当线圈做成正五边形ABCDE时,请说明能被半径为a的圆形纸片完全盖住;
(2)如图④,当线圈做成平行四边形ABCD时,能否被半径为a的圆形纸片完全盖住请说明理由;
(3)如图⑤,当线圈做成任意形状的图形时,是否还能被半径为a的圆形纸片完全盖住?若能盖住,请通过计算说明;若不能盖住,请你说明理由.
题型:不详难度:| 查看答案
如图,已知四边形ABCD是⊙O的内接四边形,且AB=CD=5,AC=7,BE=3.下列命题错误的是(  )
A.△ABE≌△DCE
B.∠BDA=45°
C.S四边形ABCD=24.5
D.图中全等的三角形共有2对

题型:不详难度:| 查看答案
直径为20cm的圆内接正六边形的面积是______cm2
题型:不详难度:| 查看答案
如图,ABCD为圆内接四边形,E是AD延长线上一点,如果∠B=60°,那么∠EDC等于(  )
A.120°B.60°C.40°D.30°

题型:不详难度:| 查看答案
已知如图,△ABC和△DCE都是等边三角形,若△ABC的边长为1,则△BAE的面积是______.
四边形ABCD和四边形BEFG都是正方形,若正方形ABCD的边长为4,则△FAC的面积是______.

如果两个正多边形ABCDE…和BPKGY…是正n(n≥3)边形,正多边形ABCDE…的边长是2a,则△KCA的面积是______.(结果用含有a、n的代数式表示)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.