当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,已知AB是⊙O的直径,且AB为6,过B点作⊙O的切线CB与⊙O相切于点B,在半圆AB上有一点D使∠ABD=30°,BD的中点为E,连接OE并延长OE与BC...
题目
题型:不详难度:来源:
如图,已知AB是⊙O的直径,且AB为6,过B点作⊙O的切线CB与⊙O相切于点B,在半圆AB上有一点D使∠ABD=30°,BD的中点为E,连接OE并延长OE与BC交于点C,连接CD.
(1)求证:CD是⊙O的切线.
(2)四边形ABCD的周长是多少?
答案
(1)证明:连接OD,
∵OE是BD的中点且BO=DO,
∴OE⊥BD,
∴CE⊥BD,
∵BE=DE,
∴BC=DC,
∵OB=OD,OC=OC,
∴△OBC≌△ODC,
∵BC是⊙O的切线,
∴∠OBC=90°,
∴∠ODC=90°,
∴CD是⊙O的切线;

(2)∵BC是⊙O的切线,
∴∠OBC=90°,
∵∠ABD=30°,
∴∠DBC=60°,
∵BC=CD,
∴∠DBC=∠BDC=60°,
∴△BCD是等边三角形,
∴BC=BD=CD,
∵AB是直径,
∴∠ADB=90°,
∵∠ABD=30°,AB=6,
∴AD=
1
2
AB=
1
2
×=3,BD=


AB2-AD2
=


62-32
=3


3

∴四边形ABCD的周长为:3


3
+3


3
+3+6=9+6


3

核心考点
试题【如图,已知AB是⊙O的直径,且AB为6,过B点作⊙O的切线CB与⊙O相切于点B,在半圆AB上有一点D使∠ABD=30°,BD的中点为E,连接OE并延长OE与BC】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
已知Rt△ABC中,∠A=30゜,∠C=90゜,D为射线AB上一动点,经过点C的⊙O与直线AB相切于点D,交射线AC于点E.
(1)如图1,点D在边AC上,若AB=12,求⊙O的半径;
(2)如图2,CD平分∠ACB,⊙O的半径为1,求AC的长.
题型:不详难度:| 查看答案
如图,AB,BC分别是⊙O的直径和弦,点D为
BC
上一点,弦DE交⊙O于点E,交AB于点F,交BC于点G,过点C的切线交ED的延长线于H,且HC=HG,连接BH,交⊙O于点M,连接MD,ME.
求证:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.
题型:不详难度:| 查看答案
如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.
(1)求证:CA是圆的切线;
(2)若点E是BC上一点,已知AE=6,∠ABC=25°,∠AEC=50°,求圆的直径.(精确到0.1)
题型:不详难度:| 查看答案
如图,在△ABC中,AC=6,BC=8,AB=10,以AC为直径作⊙O交AB于点D.
(1)判断直线BC和⊙O的位置关系,并说明理由;
(2)求AD的长.
题型:不详难度:| 查看答案
如图,PA、PB切⊙O于点A、B,AC是⊙O的直径,且∠BAC=35°,则∠P=______度.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.