当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图(1)正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动到点M,点C),以AB为直径作⊙O,过点P作⊙O的切线交AD于点F,切点为...
题目
题型:不详难度:来源:
如图(1)正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动到点M,点C),以AB为直径作⊙O,过点P作⊙O的切线交AD于点F,切点为E.
(1)求四边形CDFP的周长;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC,FP相交于点G,连接OE并延长交直线DC于H〔如图(2)〕.问是否存在点P,使△EFO△EHG(其中△EFO顶点E、F、O与△EHG顶点E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.
答案
(1)∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴AF,BP是⊙O的切线,(1分)
又∵PF是⊙O的切线,
∴FE=FA,PE=PB,(1分)
∴四边形CDFP的周长为AD+DC+CB=6;(1分)

(2)如图1,连接OE,∵PF是⊙O的切线
∴OE⊥PF(1分)
在Rt△AOF和Rt△EOF中,
∵AO=EO,OF=OF,
∴Rt△AOF≌Rt△EOF,
∴∠AOF=∠EOF(1分)
同理∠BOP=∠EOP,
∴∠EOF+∠EOP=
1
2
×180°=90°
,(1分)
∵PF是⊙O的切线,
∴OE⊥PF,
∴Rt△EOFRt△EPO
∴OE2=EP•EF,即OE2=PB•AF,(1分)即12=x•y,
∴y=
1
x
,(1分)自变量x的取值范围是1<x<2;(1分)

(3)存在.理由如下:
如图2,
∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,(1分)
当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,Rt△EFORt△EHG,
此时在Rt△AFO中,
y=AF=OA•tan30°=


3
3
,(1分)即x=
1
y
=


3
(1分)
解得:x=


3
,y=


3
3

∴当x=


3
,y=


3
3
时,△EFO△EHG.
核心考点
试题【如图(1)正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动到点M,点C),以AB为直径作⊙O,过点P作⊙O的切线交AD于点F,切点为】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是______.
题型:不详难度:| 查看答案
已知:如图,AB是⊙O的直径,点C是⊙O上的一点,CD交AB的延长线于D,∠DCB=∠CAB.
(1)求证:CD为⊙O的切线.
(2)若CD=4,BD=2,求⊙O的半径长.
题型:不详难度:| 查看答案
如图,AB、CD是⊙O的两条平行弦,BEAC交CD于E,过A点的切线交DC延长线于P,若AC=3


2
,则PC•CE的值是(  )
A.18B.6C.6


2
D.9


3

题型:不详难度:| 查看答案
如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为1个长度单位每秒,以O为圆心、


3
为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第______秒.
题型:不详难度:| 查看答案
如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是(  )
A.4.75B.4.8C.5D.4


2

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.