当前位置:初中试题 > 数学试题 > 直线与圆位置关系 > 如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若⊙O...
题目
题型:不详难度:来源:
如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)判断直线DE与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为6,∠BAC=60°,延长ED交AB延长线于点F,求阴影部分的面积.
答案
(1)
直线DE与⊙O的位置关系是相切,
证明:连接OD,
∵AO=BO,BD=DC,
∴ODAC,
∵DE⊥AC,
∴DE⊥OD,
∵OD为半径,
直线DE是⊙O的切线,
即直线DE与⊙O的位置关系是相切;

(2)∵ODAC,∠BAC=60°,
∴∠DOB=∠A=60°,
∵DE是⊙O切线,
∴∠ODF=90°,
∴∠F=30°,
∴FO=2OD=12,
由勾股定理得:DF=6


3

∴阴影部分的面积S=S△ODF-S扇形DOB=
1
2
×6×6


3
-
60π×62
360
=18


3
-6π.
核心考点
试题【如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若⊙O】;主要考察你对直线与圆位置关系等知识点的理解。[详细]
举一反三
已知:如图,△ABC中,AB=AC,D是BC的中点,AE平分∠DAC交DC于E,点O是AC一点,⊙O过A、E两点,交AD于G,交AC于F,连接EF.
(1)求证:CD与⊙O相切.
(2)连接FG交AE于H,若EH=2,HA=
5
2
,求EF长.
题型:不详难度:| 查看答案
如图,PA、PB是⊙O的切线,A、B为切点,C是劣弧AB上的一点,∠P=50°,∠C=______.
题型:不详难度:| 查看答案
如图,A、B、C三点在⊙O上,
AB
=
BC
,∠1=∠2.
(1)判断OA与BC的位置关系,并说明理由;
(2)求证:四边形OABC是菱形;
(3)过A作⊙O的切线交CB的延长线于P,且OA=4,求△APB的周长.
题型:不详难度:| 查看答案
如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC于点D,交AB于点G,过D作DE⊥AC,垂足为E.
(1)DE与⊙O有什么位置关系,请写出你的结论并证明;
(2)若⊙O的半径长为3,AF=4,求CE的长.
题型:不详难度:| 查看答案
如图,已知AB⊥MN,垂足为点B,P是射线BN上的一个动点,AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,点C到MN的距离为线段CD的长.
(1)求y关于x的函数解析式,并写出它的定义域;
(2)在点P的运动过程中,点C到MN的距离是否会发生变化?如果发生变化,请用x的代数式表示这段距离;如果不发生变化,请求出这段距离;
(3)如果圆C与直线MN相切,且与以BP为半径的圆P也相切,求BP:PD的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.