当前位置:初中试题 > 数学试题 > 圆的认识 > (2011四川泸州,17,3分)如图,半径为2的圆内接等腰梯形ABCD,它的下底AB是圆的直径,上底CD的端点在圆周上,则该梯形周长的最大值是       ...
题目
题型:不详难度:来源:
(2011四川泸州,17,3分)如图,半径为2的圆内接等腰梯形ABCD,它的下底AB是圆的直径,上底CD的端点在圆周上,则该梯形周长的最大值是       
答案
18.
解析
答案为:10
根据圆心为O,则OA=OB=OC=OD=2,设腰长为x,设上底长是2b,利用勾股定理得出,则x2-(2-b)2=R2-b2=CP2,再利用二次函数最值求出即可.
解:圆心为O,连接OD,OC,过O作OE⊥CD,过C作CP⊥OB,
∴E为DC的中点,DE=CE=CD=b,
∵等腰梯形ABCD,
∴DC∥AB,OE⊥CD,
∴OE⊥AB,
∴∠CEO=∠EOP=∠OPC=90°,
∴四边形EOPC为矩形,
∴EC=OP,

则OA=OB=OC=OD=2,设腰长为x,
设上底长是2b,过C作直径的垂线,垂足是P,
则CP2=OC2-OP2=CB2-PB2
即x2-(2-b)2=22-b2
整理得b=2-
所以y=4+2x+2b=4+2x+4-+2x+8,
∴该梯形周长的最大值是:
故答案为:10.
核心考点
试题【(2011四川泸州,17,3分)如图,半径为2的圆内接等腰梯形ABCD,它的下底AB是圆的直径,上底CD的端点在圆周上,则该梯形周长的最大值是       】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
(11·贵港)如图所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中
点,⊙O与AC、BC分别相切于点D、E,点F是⊙O与AB的一个交点,连接DF并延长
交CB的延长线于点G,则BG的长是_  ▲  

题型:不详难度:| 查看答案
(11·贵港)(本题满分6分)
按要求用尺规作图(只保留作图痕迹,不必写出作法)
(1)在图(1)中作出∠ABC的平分线;(2)在图(2)中作出△DEF的外接圆O.
题型:不详难度:| 查看答案
(11·贵港)(本题满分11分)
如图所示,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于点B,大圆的弦BC⊥AB于点B,过点C作大圆的切线CD交AB的延长线于点D,连接OC交小圆于点E,连接BE、BO.

(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长为y:
①求y与x之间的函数关系式;
②当BE与小圆相切时,求x的值.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,C、D是圆上的两点(不与A、B重合),已知BC=2,tan∠ADC=1,则AB=__________.
题型:不详难度:| 查看答案
中,,且两边长分别为4和5,若以点为圆心,3为半径作⊙,以点为圆心,2为半径作⊙,则⊙和⊙位置关系是………(      )
A.只有外切一种情况;B.只有外离一种情况;
C.有相交或外切两种情况;D.有外离或外切两种情况.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.