当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,P是⊙M上异于A.B的一动点,直线PA.PB分别交y轴于C.D,以CD为直径的⊙N与x轴交于E、...
题目
题型:不详难度:来源:
如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,P是⊙M上异于A.B的一动点,直线PA.PB分别交y轴于C.D,以CD为直径的⊙N与x轴交于E、F,则EF的长【   】

   A.等于4    B.等于4    C.等于6   D.随P点
答案
C。
解析
圆周角定理,三角形内角和定理,相似三角形的判定和性质,垂径定理,勾股定理。
【分析】 连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,
∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,

∴OA=4+5=9,0B=5﹣4=1。
∵AB是⊙M的直径,∴∠APB=90°。
∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°。
∵∠PBA=∠OBD,∴∠PAB=∠ODB。
∵∠APB=∠BOD=90°,∴△OBD∽△OCA。∴,即,即r2﹣x2=9。
由垂径定理得:OE=OF,
由勾股定理得:OE2=EN2﹣ON2=r2﹣x2=9。∴OE=OF=3,∴EF=2OE=6。
故选C。
核心考点
试题【如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,P是⊙M上异于A.B的一动点,直线PA.PB分别交y轴于C.D,以CD为直径的⊙N与x轴交于E、】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是【   】
A.外切B.相交C.内切D.内含

题型:不详难度:| 查看答案
如图,将半径为4的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为 ▲ .
题型:不详难度:| 查看答案
推理证明(本小题满分6分)
如图,在△ABC中,DAB边上一点,圆ODBC三点, ÐDOC=2ÐACD=90°.

(1)求证:直线AC是圆O的切线;
(2)如果ÐACB=75°,圆O的半径为2,求BD的长.
题型:不详难度:| 查看答案
14.(2012山东聊城3分)在半径为6cm的圆中,60°的圆心角所对的弧长等于   ▲  cm(结果保留π).
题型:不详难度:| 查看答案
如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.
(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;
(2)当DP为⊙O的切线时,求线段DP的长.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.