当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的...
题目
题型:不详难度:来源:
如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
答案
(1)证明见解析(2)4(3)20
解析
解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°,
∴2∠BCP+2∠BCA=180°。
∴∠BCP+∠BCA=90°,即∠PCA=90°。
又∵AC是⊙O的直径,∴直线CP是⊙O的切线。
(2)如图,作BD⊥AC于点D,
∵PC⊥AC,∴BD∥PC。∴∠PCB=∠DBC。
∵C=2,sin∠BCP=
,解得:DC=2。
∴由勾股定理得:BD=4。∴点B到AC的距离为4。
(3)如图,连接AN,
在Rt△ACN中,
又CD=2,∴AD=AC﹣CD=5﹣2=3。
∵BD∥CP,∴△ABD∽△ACP。
,即。∴
在Rt△ACP中,
∴△ACP的周长为
(1))根据∠ABC=∠AC且∠CAB=2∠BCP,在△ABC中∠ABC+∠BAC+∠BCA=180°,得到2∠BCP+2∠BCA=180°,从而得到∠BCP+∠BCA=90°,证得直线CP是⊙O的切线。
(2)作BD⊥AC于点D,得到BD∥PC,从而利用求得DC=2,再根据勾股定理求得点B到AC的距离为4。
(3)先求出AC的长度,然后由BD∥PC求得△ABD∽△ACP,利用比例线段关系求得CP的长度,再由勾股定理求出AP的长度,从而求得△ACP的周长
核心考点
试题【如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则的长为( )
A.B.C.D.

题型:不详难度:| 查看答案
圆内接四边形ABCD中,∠A、∠B、∠C的度数比是2︰3︰6,则∠D的度数是(   )
(A)67.5°   (B)135°   (C)112.5°   (D)110°
题型:不详难度:| 查看答案
如图,已知AB为⊙O的直径,∠E=20°,∠DBC=50°,则∠CBE=              
题型:不详难度:| 查看答案
如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形,点是母线的中点,一只蚂蚁从点出发沿圆锥的表面爬行到点处,则这只蚂蚁爬行的最短距离是 cm.
题型:不详难度:| 查看答案
16如图,在中,cm,分别以B、C为圆心的两个等圆外切,则图中阴影部分的面积为         

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.