当前位置:初中试题 > 数学试题 > 圆的认识 > 如图,P是的⊙O半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长DP交⊙O于K,连接KO、OD.(1)证明:PC=PD;...
题目
题型:不详难度:来源:
如图,P是的⊙O半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长DP交⊙O于K,连接KO、OD.

(1)证明:PC=PD;
(2)若该圆半径为5,CD//KO,请求出OC的长.
答案
(1)先根据等边对等角得到∠1=∠2,再根据切线的性质得到CD⊥OD,即可得到∠3+∠1=90°,再根据∠CDP+∠2=90°可得∠3=∠CDP,从而可以证得结论;(2)
解析

试题分析:(1)先根据等边对等角得到∠1=∠2,再根据切线的性质得到CD⊥OD,即可得到∠3+∠1=90°,再根据∠CDP+∠2=90°可得∠3=∠CDP,从而可以证得结论;
(2)先根据“ASA”判定△CPD≌△OPK,从而得到CD=OK,再根据勾股定理即可求得OC的值.
(1)如图

∵PD=PO
∴∠1=∠2
∵CD是⊙O的切线
∴CD⊥OD
∴∠3+∠1=90°
又∵∠CDP+∠2=90°
∴∠3=∠CDP
∴PC=PD;
(2)∵CD∥KO,有∠3=∠POK,
由(1)得,CP=PD=PO,又∠CPD=∠KPO
∴△CPD≌△OPK
∴CD=OK=5
在Rt△COD中,
点评:本题知识点较多,综合性强,是中考常见题,难度不大,学生需熟练掌握圆的基本性质.
核心考点
试题【如图,P是的⊙O半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长DP交⊙O于K,连接KO、OD.(1)证明:PC=PD;】;主要考察你对圆的认识等知识点的理解。[详细]
举一反三
如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20,分别以DM、CM为直径作两个大小不同和⊙O1和⊙O2,则图中所示阴影部分的面积为          .(结果保留
题型:不详难度:| 查看答案
欣赏著名作家巴金在他的作品《海上日出》中对日出状况的描写:“果然,过了一会儿,那里出现了太阳的小半边脸,红是红得很,却没有亮光。”这段文字中,给我们呈现了直线与圆的哪一种位置关系(    )
A.相切B.相离C.外切D.相交

题型:不详难度:| 查看答案
如图,⊙O的半径为5,弦AB=8,OC⊥AB于C,则OC的长等于         .
 
题型:不详难度:| 查看答案
⊙O的半径为1㎝,弦AB=㎝,AC=㎝,则∠BAC的度数为       
题型:不详难度:| 查看答案
如图,A,B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB是⊙O上关于A、B的滑动角

(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB=      °;
②若⊙O的半径是1,AB=,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系,直接写出结论.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.