当前位置:初中试题 > 数学试题 > 相似三角形应用 > 如图,身高为1.5m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3m,CA=1m,则树...
题目
题型:不详难度:来源:
如图,身高为1.5m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3m,CA=1m,则树的高度为______m.
答案
如图:
∵CDBE,
∴△ACD△ABE,
∴AC:AB=CD:BE,
∴1:4=1.5:BE,
∴BE=6m.
∴树的高度为6m.
核心考点
试题【如图,身高为1.5m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3m,CA=1m,则树】;主要考察你对相似三角形应用等知识点的理解。[详细]
举一反三
为测量被荷花池相隔的两树A、B的距离,数学活动小组设计了如图所示的测量方案:在AB的垂线AP上取两点C、E,再定出AP的垂线FE,使F、C、B在一条直线上.其中三位同学分别测量出了三组数据:
(1)AC、∠ACB;
(2)AC、CE;
(3)EF、CE、AC.
能根据所测数据,求得A、B两树距离的是(  )
A.(1)B.(1),(2)C.(2),(3)D.(1),(3)

题型:不详难度:| 查看答案
为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.
题型:不详难度:| 查看答案
(附加题)如图,在一块三角形区域土地ABC中,∠C=90°,AC=8,BC=6,底边AB上的高h=
24
5
,现在要在△ABC内建造一个面积为12的矩形水池DEFG,如图的设计方案是使DE在AB边上,点G在AC边上,点F在BC边上.
(1)求此方案中水池宽DG;
(2)实际施工时(修建前),发现在AB边上距B点l.85的M处有一棵古老的大树,而这棵大树却又在矩形水池边DE上.为了保护这棵古树,请你另外设计一种方案,使三角形区域中也能修建一个面积为12的矩形水池,并且还能避开大树.(若总分超过100分,则此题超出分数不计入总分)
题型:不详难度:| 查看答案
如图,在太阳光下,身高1.5m的小颖同学影子的顶端正好与大树影子的顶端重合,此时测得AC=2m,CE=18cm,则树高DE=______m.
题型:不详难度:| 查看答案
如图,小明为了测量楼MN的高,在离MN20m的A处放了一个平面镜,小明沿NA后邀到点C,正好从镜中看到楼顶M,若AC=2m,小明的眼睛离地面的高度为1.8m,请你帮助小明计算一下楼房的高度.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.