当前位置:初中试题 > 数学试题 > 相似三角形性质 > 如图所示,在正方形ABCD中,E是AB中点,∠CEF=∠ECD,EF交AD于P,交CD延长线于F.求证:...
题目
题型:同步题难度:来源:
如图所示,在正方形ABCD中,E是AB中点,∠CEF=∠ECD,EF交AD于P,交CD延长线于F.求证:
答案
证明:过点F作FG∥BC交BA延长线于G点,  
在Rt△EGF中由勾股定理得,  DF= AB=AE,
再由面积比等于相似比的平方即可.
核心考点
试题【如图所示,在正方形ABCD中,E是AB中点,∠CEF=∠ECD,EF交AD于P,交CD延长线于F.求证:】;主要考察你对相似三角形性质等知识点的理解。[详细]
举一反三
如图所示,在等腰梯形ABCD中,AD∥BC,CD⊥BD,CE⊥BC交BD的延长线于E,FE⊥AB,交BA的延长线于F. 
(1)求证:AB2=AC·DE;
(2)求证:点A是BF的中点.
题型:同步题难度:| 查看答案
在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(),(为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P()、P()都是过点P的△ABC的相似线(其中⊥BC,∥AC),此外还有_______条
(2)如图②,∠C=90°,∠B=30°,当_______时,P()截得的三角形面积为△ABC面积的.
题型:福建省中考真题难度:| 查看答案
已知:A 、B 、C 不在同一直线上.
(1)若点A 、B 、C 均在半径为R 的⊙O上,
(I)如图一,当∠A=45 °时,R=1 ,求∠BOC 的度数和BC 的长度; 
(Ⅱ)如图二,当∠A 为锐角时,求证sin ∠A=
(2).若定长线段BC的两个端点分别在∠MAN的两边AM、AN(B、C均与点A不重合)滑动,如图三,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为点P ,试探索:在整个滑动过程中,P、A两点的距离是否保持不变?请说明理由.
题型:福建省中考真题难度:| 查看答案
已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为          
题型:湖南省中考真题难度:| 查看答案
如图,甲、乙两人分别从A(1,)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.
(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.
(2)当t为何值时,△OMN∽△OBA?
(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值。
题型:江苏中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.