当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于 点E,点D为AB的中点,连接DE,则△BDE的周长是A.B.10C.D.12...
题目
题型:不详难度:来源:
如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于 点E,点D为AB的中点,连接DE,则△BDE的周长是
A.B.10C.D.12

答案
B
解析

试题分析:先根据等腰三角形三线合一的性质证得AE⊥BC,E为BC的中点,再根据直角三角形的性质求得DE的长,从而可以求得结果.
∵AB=AC=6,BC=8,AE平分∠BAC
∴BE=4,AE⊥BC
∵点D为AB的中点
∴DE=BD=3
∴△BDE的周长=3+3+4=10
故选B.
点评:解题的关键是熟练掌握等腰三角形三线合一的性质:等腰三角形的顶角平分线、底边上的高、底边的中线重合;直角三角形斜边上的中线等于斜边的一半.
核心考点
试题【如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于 点E,点D为AB的中点,连接DE,则△BDE的周长是A.B.10C.D.12】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
完成下列各题:
(1)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:BC="AD."

(2)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.
题型:不详难度:| 查看答案
如图,将一副三角板按如图方式叠放,则∠等于(   )
A.30°B.45°C.60°D.75°

题型:不详难度:| 查看答案
已知Rt△ABC,∠ACB=90°,AC=BC=4,点O是AB中点,点P、Q分别从点A、C出发,沿AC、CB以每秒1个单位的速度运动,到达点C、B后停止。连结PQ、点D是PQ中点,连结CD并延长交AB于点E.

(1)试说明:△POQ是等腰直角三角形;
(2)设点P、Q运动的时间为t秒,试用含t的代数式来表示△CPQ的面积S,并求出
S的最大值;
(3)如图2,点P在运动过程中,连结EP、EQ,问四边形PEQC是什么四边形,并说明理由;
(4)求点D运动的路径长(直接写出结果).
题型:不详难度:| 查看答案
如图,在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是__    
题型:不详难度:| 查看答案
如图,△ABC是等边三角形,且AB∥CE.

(1) 求证:△ABD∽△CED;
(2) 若AB=6,AD=2CD,
①求E到BC的距离EH的长.
② 求BE的长
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.