当前位置:初中试题 > 数学试题 > 相似图形性质 > 如图,在△ABC中,AB=CB,∠ABC=900,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠C...
题目
题型:不详难度:来源:
如图,在△ABC中,AB=CB,∠ABC=900,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.

①求证:△ABE≌△CBD;
②若∠CAE=300,求∠BDC的度数.
答案
①见解析②750
解析
解:①证明:∵∠ABC=900,D为AB延长线上一点,∴∠ABE=∠CBD=90°。
在△ABE和△CBD中,∵,
∴△ABE≌△CBD(SAS)。
②∵AB=CB,∠ABC=900,∴∠CAB=450
∵∠CAE=300,∴∠BAE=∠CAB-∠CAE=45°-300=150
∵△ABE≌△CBD,∴∠BCD=∠BAE=150
∴∠BDC=900-∠BCD=900-150=750
①求出∠ABE=∠CBD,然后利用“边角边”证明△ABE和△CBD全等即可。
②先根据等腰直角三角形的锐角都是45°求出∠CAB,再求出∠BAE,然后根据全等三角形对应角相等求出∠BCD,再根据直角三角形两锐角互余其解即可。
核心考点
试题【如图,在△ABC中,AB=CB,∠ABC=900,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠C】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.

题型:不详难度:| 查看答案
一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.
(2)特殊位置,证明结论
若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)
题型:不详难度:| 查看答案
已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为的中点.

(1)求证:AC是半圆O的切线;
(2)若AD=6,AE=6,求BC的长.
题型:不详难度:| 查看答案
把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离A A'是(   )
A.-1B.C.1D.

题型:不详难度:| 查看答案
如图,DE∥BC,EF∥AB,且S△ADE=4,S△EFC=9,则△ABC的面积为      

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.